login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A128764
Expansion of chi(q) / chi(q^13) in powers of q where chi() is a Ramanujan theta function.
1
1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 4, 4, 4, 4, 5, 6, 6, 6, 7, 9, 9, 10, 12, 12, 13, 14, 16, 18, 19, 20, 23, 26, 26, 28, 30, 33, 37, 38, 42, 46, 49, 52, 56, 62, 65, 70, 76, 84, 89, 92, 101, 110, 117, 123, 133, 145, 153, 162, 174, 188, 197, 208, 227
OFFSET
0,9
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * eta(q^2)^2 * eta(q^13) * eta(q^52) / (eta(q) * eta(q^4) * eta(q^26)^2) in powers of q.
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u - v^3) * (u^3 - v) - 3*u*v * (u^2 + v^2 - u*v).
Euler transform of period 52 sequence [ 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, 0, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 0, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, ...].
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(26*k)) / ( (1 + x^(2*k)) * (1 + x^(13 k)) ).
a(n) ~ exp(Pi*sqrt(2*n/13)) / (2^(5/4) * 13^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + ...
G.f. = q + q^3 + q^7 + q^9 + q^11 + q^13 + q^15 + 2*q^17 + 2*q^19 + 2*q^21 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^13, -x^13] / QPochhammer[ x, -x]), {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax = 40; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(26*k)) / ( (1 + x^(2*k)) * (1 + x^(13*k)) ), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^13 + A) * eta(x^52 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^26 + A)^2), n))};
CROSSREFS
Sequence in context: A198897 A201375 A309865 * A324818 A233417 A299741
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 25 2007
STATUS
approved