login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341384
Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^2.
10
1, 4, 14, 36, 89, 200, 434, 898, 1810, 3548, 6810, 12816, 23719, 43250, 77795, 138244, 242920, 422510, 727907, 1243094, 2105493, 3538936, 5905481, 9787810, 16118588, 26383244, 42936039, 69491436, 111884015, 179239648, 285775148, 453550910, 716670609
OFFSET
2,2
LINKS
FORMULA
a(n) ~ A026011(n). - Vaclav Kotesovec, Feb 20 2021
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
`if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 2):
seq(a(n), n=2..34); # Alois P. Heinz, Feb 10 2021
MATHEMATICA
nmax = 34; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 10 2021
STATUS
approved