login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^2.
10

%I #11 Feb 20 2021 05:38:10

%S 1,4,14,36,89,200,434,898,1810,3548,6810,12816,23719,43250,77795,

%T 138244,242920,422510,727907,1243094,2105493,3538936,5905481,9787810,

%U 16118588,26383244,42936039,69491436,111884015,179239648,285775148,453550910,716670609

%N Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^2.

%H Alois P. Heinz, <a href="/A341384/b341384.txt">Table of n, a(n) for n = 2..10000</a>

%F a(n) ~ A026011(n). - _Vaclav Kotesovec_, Feb 20 2021

%p g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/

%p `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)

%p end:

%p b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,

%p g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))

%p end:

%p a:= n-> b(n, 2):

%p seq(a(n), n=2..34); # _Alois P. Heinz_, Feb 10 2021

%t nmax = 34; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &

%Y Cf. A026007, A026011, A321947, A327380, A341385, A341386, A341387, A341388, A341390, A341391.

%K nonn

%O 2,2

%A _Ilya Gutkovskiy_, Feb 10 2021