login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058094
Number of 321-hexagon-avoiding permutations in S_n, i.e., permutations of 1..n with no submatrix equivalent to 321, 56781234, 46781235, 56718234 or 46718235.
9
1, 1, 2, 5, 14, 42, 132, 429, 1426, 4806, 16329, 55740, 190787, 654044, 2244153, 7704047, 26455216, 90860572, 312090478, 1072034764, 3682565575, 12650266243, 43456340025, 149282561256, 512821712570, 1761669869321, 6051779569463, 20789398928496, 71416886375493
OFFSET
0,3
COMMENTS
If y is 321-hexagon avoiding, there are simple explicit formulas for all the Kazhdan-Lusztig polynomials P_{x,y} and the Kazhdan-Lusztig basis element C_y is the product of C_{s_i}'s corresponding to any reduced word for y.
LINKS
S. C. Billey and G. S. Warrington, Kazhdan-Lusztig Polynomials for 321-hexagon-avoiding permutations, arXiv:math/0005052 [math.CO], 2000; J. Alg. Combinatorics, Vol. 13, No. 2 (March 2001), 111-136, DOI:10.1023/A:1011279130416.
Z. Stankova and J. West, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280 (2004), 165-189.
FORMULA
a(n+1) = 6a(n) - 11a(n-1) + 9a(n-2) - 4a(n-3) - 4a(n-4) + a(n-5) for n >= 5.
O.g.f.: 1 -x*(1-4*x+4*x^2-3*x^3-x^4+x^5)/(-1+6*x-11*x^2+9*x^3-4*x^4 -4*x^5 +x^6). - R. J. Mathar, Dec 02 2007
EXAMPLE
Since the Catalan numbers count 321-avoiding permutations in S_n, a(8) = 1430 - 4 = 1426 subtracting the four forbidden hexagon patterns.
MAPLE
a[0]:=1: a[1]:=1: a[2]:=2: a[3]:=5: a[4]:=14: a[5]:=42: for n from 5 to 35 do a[n+1]:=6*a[n]-11*a[n-1]+9*a[n-2]-4*a[n-3]-4*a[n-4]+a[n-5] od: seq(a[n], n=0..35);
MATHEMATICA
LinearRecurrence[{6, -11, 9, -4, -4, 1}, {1, 2, 5, 14, 42, 132}, 40] (* Harvey P. Dale, Nov 09 2012 *)
CROSSREFS
KEYWORD
nice,nonn,easy
AUTHOR
Sara Billey, Dec 03 2000
EXTENSIONS
More terms from Emeric Deutsch, May 04 2004
a(0) prepended by Alois P. Heinz, Sep 21 2014
STATUS
approved