login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036768
Number of ordered rooted trees with n non-root nodes and all outdegrees <= six.
3
1, 1, 2, 5, 14, 42, 132, 428, 1421, 4807, 16510, 57421, 201824, 715768, 2558167, 9204651, 33315919, 121218195, 443107245, 1626546453, 5993256280, 22158739970, 82182744284, 305670888560, 1139892935454, 4261095044346, 15964169665031, 59933390160322
OFFSET
0,3
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Nickolas Hein and Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015.
Nickolas Hein and Jia Huang, Modular Catalan Numbers, European Journal of Combinatorics 61 (2017), 197-218.
Lajos Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (6).
FORMULA
G.f. A(x) satisfies A(x)=1+sum(n=1..6, (x*A(x))^n). - Vladimir Kruchinin, Feb 22 2011
MAPLE
r := 6; [ seq((1/n)*add( (-1)^j*binomial(n, j)*binomial(2*n-2-j*(r+1), n-1), j=0..floor((n-1)/(r+1))), n=1..30) ];
# second Maple program:
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1), j=1..min(1, u))+
add(b(u+j-1, o-j), j=1..min(6, o)))
end:
a:= n-> b(0, n):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 28 2017
MATHEMATICA
b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
a[n_] := b[0, n, 6];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(serreverse(x/polcyclo(7)+O(x^(n+2))), n+1)) /* Ralf Stephan */
CROSSREFS
Column k=6 of A288942.
Sequence in context: A152226 A054393 A261589 * A287970 A058094 A080938
KEYWORD
nonn
EXTENSIONS
Name clarified by Andrew Howroyd, Dec 04 2017
STATUS
approved