login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036767
Number of ordered rooted trees with n non-root nodes and all outdegrees <= five.
5
1, 1, 2, 5, 14, 42, 131, 421, 1385, 4642, 15795, 54418, 189454, 665471, 2355510, 8393461, 30084695, 108394449, 392356788, 1426137550, 5203211200, 19048447855, 69951072700, 257609070810, 951172531880, 3520465229446, 13058843476526, 48540377627407
OFFSET
0,3
COMMENTS
Empirical: number of Dyck n-paths avoiding UUUUUU (or DDDDDD). e.g. of the 132 Dyck 6-paths U^6D^6 contains UUUUUU so a(6)=131. - David Scambler, Mar 24 2011
a(n) is the number of ordered unlabeled rooted trees on n+1 nodes where each node has no more than 5 children. - Geoffrey Critzer, Jan 05 2013
LINKS
Colin Defant and Kai Zheng, Stack-Sorting with Consecutive-Pattern-Avoiding Stacks, arXiv:2008.12297 [math.CO], 2020.
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, J. Ana. Num. Theor. Vol. 2, No. 2, 2014, 37-44.
Nickolas Hein and Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015.
Nickolas Hein and Jia Huang, Modular Catalan Numbers, European Journal of Combinatorics 61 (2017), 197-218.
L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (6).
FORMULA
G.f. A(x) satisfies A(x) = 1 + sum(n=1..5, (x*A(x))^n). - Vladimir Kruchinin, Feb 22 2011
MAPLE
r := 5; [ seq((1/n)*add( (-1)^j*binomial(n, j)*binomial(2*n-2-j*(r+1), n-1), j=0..floor((n-1)/(r+1))), n=1..30) ];
# second Maple program:
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1), j=1..min(1, u))+
add(b(u+j-1, o-j), j=1..min(5, o)))
end:
a:= n-> b(0, n):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 28 2017
MATHEMATICA
nn=12; f[x_]:=Sum[a[n]x^n, {n, 0, nn}]; sol=SolveAlways[Series[0==f[x]-x -x f[x]-x f[x]^2-x f[x]^3-x f[x]^4- x f[x]^5, {x, 0, nn}], x]; Table[a[n], {n, 0, nn}]/.sol (* Geoffrey Critzer, Jan 05 2013 *)
b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
a[n_] := b[0, n, 5];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(serreverse(x/sum(k=0, 5, x^k)+O(x^(n+2))), n+1)) \\ Ralf Stephan
CROSSREFS
Column k=5 of A288942.
Sequence in context: A054392 A261588 A006930 * A261894 A287969 A061922
KEYWORD
nonn
EXTENSIONS
Name clarified by Andrew Howroyd, Dec 04 2017
STATUS
approved