login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ordered rooted trees with n non-root nodes and all outdegrees <= five.
5

%I #63 Nov 17 2020 17:28:06

%S 1,1,2,5,14,42,131,421,1385,4642,15795,54418,189454,665471,2355510,

%T 8393461,30084695,108394449,392356788,1426137550,5203211200,

%U 19048447855,69951072700,257609070810,951172531880,3520465229446,13058843476526,48540377627407

%N Number of ordered rooted trees with n non-root nodes and all outdegrees <= five.

%C Empirical: number of Dyck n-paths avoiding UUUUUU (or DDDDDD). e.g. of the 132 Dyck 6-paths U^6D^6 contains UUUUUU so a(6)=131. - _David Scambler_, Mar 24 2011

%C a(n) is the number of ordered unlabeled rooted trees on n+1 nodes where each node has no more than 5 children. - _Geoffrey Critzer_, Jan 05 2013

%H Alois P. Heinz, <a href="/A036767/b036767.txt">Table of n, a(n) for n = 0..1000</a>

%H Colin Defant and Kai Zheng, <a href="https://arxiv.org/abs/2008.12297">Stack-Sorting with Consecutive-Pattern-Avoiding Stacks</a>, arXiv:2008.12297 [math.CO], 2020.

%H Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.

%H Vladimir Kruchinin and D. V. Kruchinin, <a href="http://www.naturalspublishing.com/files/published/yzmx634l9k644k.pdf">Composita and their properties</a>, J. Ana. Num. Theor. Vol. 2, No. 2, 2014, 37-44.

%H Nickolas Hein and Jia Huang, <a href="http://arxiv.org/abs/1508.01688">Modular Catalan Numbers</a>, arXiv:1508.01688 [math.CO], 2015.

%H Nickolas Hein and Jia Huang, <a href="https://doi.org/10.1016/j.ejc.2016.11.004">Modular Catalan Numbers</a>, European Journal of Combinatorics 61 (2017), 197-218.

%H L. Takacs, <a href="http://www.appliedprobability.org/data/files/TMS%20articles/18_1_1.pdf">Enumeration of rooted trees and forests</a>, Math. Scientist 18 (1993), 1-10, esp. Eq. (6).

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F G.f. A(x) satisfies A(x) = 1 + sum(n=1..5, (x*A(x))^n). - _Vladimir Kruchinin_, Feb 22 2011

%p r := 5; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ];

%p # second Maple program:

%p b:= proc(u, o) option remember; `if`(u+o=0, 1,

%p add(b(u-j, o+j-1), j=1..min(1, u))+

%p add(b(u+j-1, o-j), j=1..min(5, o)))

%p end:

%p a:= n-> b(0, n):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Aug 28 2017

%t nn=12;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[Series[0==f[x]-x -x f[x]-x f[x]^2-x f[x]^3-x f[x]^4- x f[x]^5,{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol (* _Geoffrey Critzer_, Jan 05 2013 *)

%t b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];

%t a[n_] := b[0, n, 5];

%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 07 2017, after _Alois P. Heinz_ *)

%o (PARI) a(n)=if(n<0,0,polcoeff(serreverse(x/sum(k=0,5,x^k)+O(x^(n+2))),n+1)) \\ _Ralf Stephan_

%Y Column k=5 of A288942.

%K nonn

%O 0,3

%A _N. J. A. Sloane_

%E Name clarified by _Andrew Howroyd_, Dec 04 2017