OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
EXAMPLE
a(4) = 14: 4a, 4b, 4c, 4d, 4e, 3a1a, 3b1a, 1a3a, 1a3b, 22aa 2a11aa, 12a1aa, 11aa2a, 1111aaaa.
a(5) = 42: 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i, 5j, 5k, 5l, 5m, 5n, 4a1a, 4b1a, 4c1a, 4d1a, 4e1a, 1a4a, 1a4b, 1a4c, 1a4d, 1a4e, 3a2a, 3b2a, 2a3a, 2a3b, 3a11aa, 3b11aa, 13a1aa, 13b1aa, 11aa3a, 11aa3b, 22aa1a, 21a2aa, 1a22aa, 2a111aaa, 12a11aaa, 112a1aaa, 111aaa2a, 11111aaaaa.
a(6) = 131: 6a, ..., 33aa, 33ab, 33bb, ..., 111111aaaaaa. The marked composition 33ba is not in this list.
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p!,
`if`(i<1, 0, add((t-> binomial(t+j-1, t-1))(
a(i-1))*b(n-i*j, i-1, p+j)/j!, j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!,
If[i < 1, 0, Sum[Function[t, Binomial[t + j - 1, t - 1]][
a[i - 1]]*b[n - i*j, i - 1, p + j]/j!, {j, 0, n/i}]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 04 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Alois P. Heinz, Sep 05 2015
STATUS
approved