Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Jun 10 2019 00:56:44
%S 1,1,2,5,14,42,132,428,1421,4807,16510,57421,201824,715768,2558167,
%T 9204651,33315919,121218195,443107245,1626546453,5993256280,
%U 22158739970,82182744284,305670888560,1139892935454,4261095044346,15964169665031,59933390160322
%N Number of ordered rooted trees with n non-root nodes and all outdegrees <= six.
%H Alois P. Heinz, <a href="/A036768/b036768.txt">Table of n, a(n) for n = 0..1000</a>
%H Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.
%H Nickolas Hein and Jia Huang, <a href="http://arxiv.org/abs/1508.01688">Modular Catalan Numbers</a>, arXiv:1508.01688 [math.CO], 2015.
%H Nickolas Hein and Jia Huang, <a href="https://doi.org/10.1016/j.ejc.2016.11.004">Modular Catalan Numbers</a>, European Journal of Combinatorics 61 (2017), 197-218.
%H Lajos Takacs, <a href="http://www.appliedprobability.org/data/files/TMS%20articles/18_1_1.pdf">Enumeration of rooted trees and forests</a>, Math. Scientist 18 (1993), 1-10, esp. Eq. (6).
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F G.f. A(x) satisfies A(x)=1+sum(n=1..6, (x*A(x))^n). - _Vladimir Kruchinin_, Feb 22 2011
%p r := 6; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ];
%p # second Maple program:
%p b:= proc(u, o) option remember; `if`(u+o=0, 1,
%p add(b(u-j, o+j-1), j=1..min(1, u))+
%p add(b(u+j-1, o-j), j=1..min(6, o)))
%p end:
%p a:= n-> b(0, n):
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Aug 28 2017
%t b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
%t a[n_] := b[0, n, 6];
%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 07 2017, after _Alois P. Heinz_ *)
%o (PARI) a(n)=if(n<0,0,polcoeff(serreverse(x/polcyclo(7)+O(x^(n+2))),n+1)) /* _Ralf Stephan_ */
%Y Column k=6 of A288942.
%K nonn
%O 0,3
%A _N. J. A. Sloane_
%E Name clarified by _Andrew Howroyd_, Dec 04 2017