login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A symmetrical triangle sequence:t(n,m)=(-1)^m*(n - m)!*Binomial[n - 1, m] + (-1)^(n - m + 1)*(n - (n - m + 1))!*Binomial[n - 1, n - m + 1]
0

%I #2 Mar 30 2012 17:34:40

%S 2,5,5,37,-16,37,239,-50,-50,239,1801,-492,180,-492,1801,15119,-4186,

%T 714,714,-4186,15119,141121,-40336,8568,-2688,8568,-40336,141121,

%U 1451519,-423342,90504,-13104,-13104,90504,-423342,1451519

%N A symmetrical triangle sequence:t(n,m)=(-1)^m*(n - m)!*Binomial[n - 1, m] + (-1)^(n - m + 1)*(n - (n - m + 1))!*Binomial[n - 1, n - m + 1]

%C Row sums are:

%C {2, 10, 58, 378, 2798, 23294, 216018, 2211154,...}.

%D F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 576 and 270.

%F t(n,m)=(-1)^m*(n - m)!*Binomial[n - 1, m] + (-1)^(n - m + 1)*(n - (n - m + 1))!*Binomial[n - 1, n - m + 1]

%e {2},

%e {5, 5},

%e {37, -16, 37},

%e {239, -50, -50, 239},

%e {1801, -492, 180, -492, 1801},

%e {15119, -4186, 714, 714, -4186, 15119},

%e {141121, -40336, 8568, -2688, 8568, -40336, 141121},

%e {1451519, -423342, 90504, -13104, -13104, 90504, -423342, 1451519}

%t t[n_, m_] := (-1)^m*(n - m)!*Binomial[n - 1, m] + (-1)^(n - m + 1)*(n - (n - m + 1))!*Binomial[n - 1, n - m + 1];

%t Table[Table[t[n, m], {m, 2, n - 1}], {n, 3, 10}];

%t Flatten[%]

%Y Cf. A132159

%K sign,tabl,uned

%O 3,1

%A _Roger L. Bagula_, Apr 27 2010