login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050401
Number of independent sets of nodes in P_4 X C_n (n > 2).
2
8, 1, 41, 142, 933, 4741, 26660, 143697, 788453, 4293286, 23454801, 127953981, 698467368, 3811712633, 20803963753, 113540081302, 619672701957, 3381980484909, 18457878595412, 100737602247769, 549796303339413
OFFSET
0,1
LINKS
FORMULA
a(n) = a(n-1) + 20*a(n-2) + 27*a(n-3) - 14*a(n-4) - 25*a(n-5) + 4*a(n-6) + 5*a(n-7) - a(n-8).
G.f.: (8 -7*x -120*x^2 -135*x^3 +56*x^4 +75*x^5 -8*x^6 -5*x^7)/((1+x)*(1+2*x-x^2)*(1-4*x-9*x^2+5*x^3+4*x^4-x^5)). - Colin Barker, Aug 31 2012
MAPLE
seq(coeff(series((8 -7*x -120*x^2 -135*x^3 +56*x^4 +75*x^5 -8*x^6 -5*x^7)/( (1+x)*(1+2*x-x^2)*(1-4*x-9*x^2+5*x^3+4*x^4-x^5)), x, n+1), x, n), n = 0 ..30); # G. C. Greubel, Oct 30 2019
MATHEMATICA
CoefficientList[Series[(8-7*x-120*x^2-135*x^3+56*x^4+75*x^5-8*x^6-5*x^7) /( (1+x)*(1+2*x-x^2)*(1-4*x-9*x^2+5*x^3+4*x^4-x^5)), {x, 0, 50}], x] (* Vincenzo Librandi, May 11 2017 *)
PROG
(Magma) I:=[8, 1, 41, 142, 933, 4741, 26660, 143697]; [n le 8 select I[n] else Self(n-1)+20*Self(n-2)+27*Self(n-3)-14*Self(n-4)- 25*Self(n-5)+4*Self(n-6)+5*Self(n-7)-Self(n-8): n in [1..30]]; // Vincenzo Librandi, May 11 2017
(PARI) my(x='x+O('x^30)); Vec((8 -7*x -120*x^2 -135*x^3 +56*x^4 +75*x^5 -8*x^6 -5*x^7)/((1+x)*(1+2*x-x^2)*(1-4*x-9*x^2+5*x^3+4*x^4-x^5))) \\ G. C. Greubel, Oct 30 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (8 -7*x -120*x^2 -135*x^3 +56*x^4 +75*x^5 -8*x^6 -5*x^7)/((1+x)*(1+2*x-x^2)*( 1-4*x-9*x^2+5*x^3+4*x^4-x^5)) )); // G. C. Greubel, Oct 30 2019
(Sage)
def A050401_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((8 -7*x -120*x^2 -135*x^3 +56*x^4 +75*x^5 -8*x^6 -5*x^7)/((1+x)*(1+2*x-x^2)*(1-4*x-9*x^2+5*x^3+4*x^4-x^5))).list()
A050401_list(30) # G. C. Greubel, Oct 30 2019
(GAP) a:=[8, 1, 41, 142, 933, 4741, 26660, 143697];; for n in [9..30] do a[n]:= a[n-1]+20*a[n-2]+27*a[n-3]-14*a[n-4]-25*a[n-5]+4*a[n-6]+5*a[n-7]-a[n-8]; od; a; # G. C. Greubel, Oct 30 2019
CROSSREFS
Column 4 of A286513.
Sequence in context: A286919 A286260 A226374 * A333403 A271060 A318576
KEYWORD
easy,nonn
AUTHOR
Stephen G Penrice, Dec 21 1999
EXTENSIONS
More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999
STATUS
approved