login
A286513
Array read by antidiagonals: T(m,n) = number of independent sets in the cylinder graph C_m X P_n.
11
1, 1, 3, 1, 7, 4, 1, 17, 13, 7, 1, 41, 43, 35, 11, 1, 99, 142, 181, 81, 18, 1, 239, 469, 933, 621, 199, 29, 1, 577, 1549, 4811, 4741, 2309, 477, 47, 1, 1393, 5116, 24807, 36211, 26660, 8303, 1155, 76, 1, 3363, 16897, 127913, 276561, 307983, 143697, 30277, 2785, 123
OFFSET
1,3
COMMENTS
Equivalently, the number of vertex covers in the cylinder graph C_m X P_n.
LINKS
Eric Weisstein's World of Mathematics, Independent Vertex Set
Wikipedia, Independent set
EXAMPLE
Table starts:
=============================================================
m\n| 1 2 3 4 5 6 7
---|---------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 3 7 17 41 99 239 577 ...
3 | 4 13 43 142 469 1549 5116 ...
4 | 7 35 181 933 4811 24807 127913 ...
5 | 11 81 621 4741 36211 276561 2112241 ...
6 | 18 199 2309 26660 307983 3557711 41097664 ...
7 | 29 477 8303 143697 2488431 43089985 746156517 ...
8 | 47 1155 30277 788453 20546803 535404487 13951571713 ...
...
CROSSREFS
Rows 3-8 are A003688(n+1), A051926, A181989, A181961, A182014, A182019.
Columns 1-4 are A000032, A051927, A050400, A050401.
Main diagonal is A212270.
Cf. A089934 (P_m X P_n), A027683, A286514.
Sequence in context: A275599 A210038 A319076 * A193970 A274510 A158841
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 10 2017
STATUS
approved