login
A051926
Number of independent sets of nodes in graph C_4 X P_n (n>2).
2
1, 7, 35, 181, 933, 4811, 24807, 127913, 659561, 3400911, 17536203, 90422365, 466247117, 2404121747, 12396433487, 63920042065, 329592522065, 1699486218903, 8763103574515, 45185411569413, 232990675202677, 1201375684008283, 6194683683674679, 31941803427179001
OFFSET
0,2
COMMENTS
Number of ways zero or more black and white stones can be placed on the points of a 2 X n grid such that no white stones are adjacent to any black stones. A078057 is a related case, where the grid is 1 X n. - Wayne VanWeerthuizen, May 04 2004
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Sela Fried and Toufik Mansour, Staircase graph words, arXiv:2312.08273 [math.CO], 2023.
FORMULA
a(n) = 5*a(n-1)+a(n-2)-a(n-3) for n>2. - Wayne VanWeerthuizen, May 04 2004
G.f.: (1+2*x-x^2)/(1-5*x-x^2+x^3). - Colin Barker, Apr 18 2012
MATHEMATICA
CoefficientList[Series[(1+2*x-x^2)/(1-5*x-x^2+x^3), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 27 2012 *)
LinearRecurrence[{5, 1, -1}, {1, 7, 35}, 40] (* Harvey P. Dale, Apr 29 2019 *)
PROG
(Magma) I:=[1, 7, 35]; [n le 3 select I[n] else 5*Self(n-1)+Self(n-2)-Self(n-3): n in [1..25]]; // Vincenzo Librandi, Apr 27 2012
CROSSREFS
Row 4 of A286513.
Sequence in context: A005055 A037506 A037689 * A297602 A289991 A295248
KEYWORD
easy,nonn
AUTHOR
Stephen G Penrice, Dec 19 1999
EXTENSIONS
More terms from James A. Sellers, Dec 20 1999
STATUS
approved