login
A051928
Number of independent sets of vertices in graph K_3 X C_n (n > 2).
2
4, 1, 13, 34, 121, 391, 1300, 4285, 14161, 46762, 154453, 510115, 1684804, 5564521, 18378373, 60699634, 200477281, 662131471, 2186871700, 7222746565, 23855111401, 78788080762, 260219353693, 859446141835, 2838557779204, 9375119479441, 30963916217533
OFFSET
0,1
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
FORMULA
a(n) = 2*a(n-1) + 4*a(n-2) + a(n-3).
G.f.: (4-7*x-5*x^2)/((1+x)*(1-3*x-x^2)). - Colin Barker, May 22 2012
a(n) = 2*(-1)^n + ((3-sqrt(13))/2)^n + ((3+sqrt(13))/2)^n. - Colin Barker, May 11 2017
a(n) = A006497+2*(-1)^n. - R. J. Mathar, Oct 20 2017
MATHEMATICA
LinearRecurrence[{2, 4, 1}, {4, 1, 13}, 30] (* Harvey P. Dale, Nov 20 2021 *)
PROG
(PARI) Vec((4-7*x-5*x^2)/((1+x)*(1-3*x-x^2)) + O(x^30)) \\ Colin Barker, May 11 2017
CROSSREFS
Row 3 of A287376.
Sequence in context: A144698 A115154 A292270 * A347486 A335337 A226906
KEYWORD
easy,nonn
AUTHOR
Stephen G Penrice, Dec 19 1999
STATUS
approved