OFFSET
0,1
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Index entries for linear recurrences with constant coefficients, signature (2,4,1).
FORMULA
a(n) = 2*a(n-1) + 4*a(n-2) + a(n-3).
G.f.: (4-7*x-5*x^2)/((1+x)*(1-3*x-x^2)). - Colin Barker, May 22 2012
a(n) = 2*(-1)^n + ((3-sqrt(13))/2)^n + ((3+sqrt(13))/2)^n. - Colin Barker, May 11 2017
a(n) = A006497+2*(-1)^n. - R. J. Mathar, Oct 20 2017
MATHEMATICA
LinearRecurrence[{2, 4, 1}, {4, 1, 13}, 30] (* Harvey P. Dale, Nov 20 2021 *)
PROG
(PARI) Vec((4-7*x-5*x^2)/((1+x)*(1-3*x-x^2)) + O(x^30)) \\ Colin Barker, May 11 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Stephen G Penrice, Dec 19 1999
STATUS
approved