The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182014 Number of independent sets of nodes in graph C_7 x P_n (n>=0). 2
 1, 29, 477, 8303, 143697, 2488431, 43089985, 746156517, 12920616493, 223736359029, 3874270087045, 67087749098875, 1161706844818941, 20116382073294655, 348339884131004417, 6031933298656980345, 104450339960964929961, 1808686034441106749965 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Cesar Bautista, Table of n, a(n) for n = 0..399 C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8. Index entries for linear recurrences with constant coefficients, signature (17,8,-44,5,1). FORMULA a(n) = 17*a(n-1) + 8*a(n-2) - 44*a(n-3) + 5*a(n-4) + a(n-5) with a(0)=1, a(1)=29, a(2)=477, a(3)=8303, a(4)=143697. G.f.: (x^4+6*x^3-24*x^2+12*x+1)/(-x^5-5*x^4+44*x^3-8*x^2-17*x+1). MATHEMATICA LinearRecurrence[{17, 8, -44, 5, 1}, {1, 29, 477, 8303, 143697}, 30] (* Harvey P. Dale, Aug 27 2012 *) PROG (PARI) Vec((x^4+6*x^3-24*x^2+12*x+1)/(-x^5-5*x^4+44*x^3-8*x^2-17*x+1)+O(x^99)) \\ Charles R Greathouse IV, Apr 06 2012 CROSSREFS Row 7 of A286513. Sequence in context: A125486 A282925 A022657 * A261540 A173986 A258462 Adjacent sequences: A182011 A182012 A182013 * A182015 A182016 A182017 KEYWORD nonn,easy AUTHOR Cesar Bautista, Apr 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 13:40 EDT 2024. Contains 373445 sequences. (Running on oeis4.)