login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182015
Diagonal sums of triangle A182013.
1
1, 2, 5, 11, 26, 60, 145, 353, 884, 2241, 5786, 15108, 39941, 106558, 286809, 777505, 2121668, 5822287, 16059288, 44494738, 123782207, 345615047, 968211110, 2720561790, 7665640267, 21654105734, 61312389677, 173978404587, 494667697706, 1409099662020
OFFSET
0,2
FORMULA
a(n) = sum(sum(M(i),i=k..n-k),k=0..n), where the M(n)'s are the Motzkin numbers.
a(n) = sum((n-i+1)*M(i),i=0..n) - sum((n-2*i)*M(i),i=0..floor(n/2)).
G.f.: (1-x+x*sqrt(1-2*x-3*x^2)-sqrt(1-2*x^2-3*x^4))/(2*x^3*(1-x)^2).
MATHEMATICA
M[n_]:=If[n==0, 1, Coefficient[(1+x+x^2)^(n+1), x^n]/(n+1)]; Table[Sum[(n-i+1)M[i], {i, 0, n}]-Sum[(n-2i)M[i], {i, 0, Floor[n/2]}], {n, 0, 30}]
PROG
(Maxima) M(n):=coeff(expand((1+x+x^2)^(n+1)), x^n)/(n+1);
makelist(sum((n-i+1)*M(i), i, 0, n)-sum((n-2*i)*M(i), i, 0, floor(n/2)), n, 0, 30);
CROSSREFS
Cf. A182013.
Sequence in context: A291930 A238437 A191692 * A124217 A095981 A247471
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Apr 06 2012
STATUS
approved