login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A182019
Number of independent sets of nodes in graph C_8 x P_n (n>=0).
2
1, 47, 1155, 30277, 788453, 20546803, 535404487, 13951571713, 363549830913, 9473376491295, 246857112567171, 6432599206076589, 167620580643483109, 4367854759124964451, 113817498564834289095, 2965854794621630365713, 77284202988962060229833
OFFSET
0,2
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Index entries for linear recurrences with constant coefficients, signature (29,-65,-317,334,187,-109,5,1).
FORMULA
a(n) = 29*a(n-1)-65*a(n-2)-317*a(n-3)+334*a(n-4)+187*a(n-5)-109*a(n-6)+5*a(n-7)+a(n-8) with a(0)=1, a(1)=47,a(2)=1155,a(3)=30277,a(4)=788453, a(5)=20546803, a(6)=535404487, a(7)=13951571713.
G.f.: -(x^7 +4*x^6 -79*x^5 +60*x^4 +154*x^3 -143*x^2 +18*x +1)/(x^8 +5*x^7 -109*x^6 +187*x^5 +334*x^4 -317*x^3 -65*x^2 +29*x -1). [Colin Barker, Aug 31 2012]
CROSSREFS
Row 8 of A286513.
Sequence in context: A162191 A162456 A010999 * A270501 A047911 A009069
KEYWORD
nonn,easy
AUTHOR
Cesar Bautista, Apr 06 2012
STATUS
approved