login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182019
Number of independent sets of nodes in graph C_8 x P_n (n>=0).
2
1, 47, 1155, 30277, 788453, 20546803, 535404487, 13951571713, 363549830913, 9473376491295, 246857112567171, 6432599206076589, 167620580643483109, 4367854759124964451, 113817498564834289095, 2965854794621630365713, 77284202988962060229833
OFFSET
0,2
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Index entries for linear recurrences with constant coefficients, signature (29,-65,-317,334,187,-109,5,1).
FORMULA
a(n) = 29*a(n-1)-65*a(n-2)-317*a(n-3)+334*a(n-4)+187*a(n-5)-109*a(n-6)+5*a(n-7)+a(n-8) with a(0)=1, a(1)=47,a(2)=1155,a(3)=30277,a(4)=788453, a(5)=20546803, a(6)=535404487, a(7)=13951571713.
G.f.: -(x^7 +4*x^6 -79*x^5 +60*x^4 +154*x^3 -143*x^2 +18*x +1)/(x^8 +5*x^7 -109*x^6 +187*x^5 +334*x^4 -317*x^3 -65*x^2 +29*x -1). [Colin Barker, Aug 31 2012]
CROSSREFS
Row 8 of A286513.
Sequence in context: A162191 A162456 A010999 * A270501 A047911 A009069
KEYWORD
nonn,easy
AUTHOR
Cesar Bautista, Apr 06 2012
STATUS
approved