login
A286511
Lexicographically earliest sequence of positive integers such that for each pair (i, j) with i < j, the 2 X 2 matrix [i, a(i); j, a(j)] has a distinct determinant.
1
1, 1, 3, 1, 7, 10, 17, 1, 22, 29, 35, 40, 28, 74, 5, 1, 70, 73, 90, 109, 103, 125, 30, 89, 158, 172, 165, 123, 171, 212, 228, 262, 242, 52, 264, 274, 167, 349, 1, 383, 288, 423, 404, 445, 412, 394, 514, 427, 478, 527, 626, 229, 602, 581, 536, 665, 710, 698
OFFSET
1,3
EXAMPLE
For n = 3:
a(3) != 1 or else det([1, 1; 2, 1]) = -1 = det([1, 1; 3, 1]);
a(3) != 2 or else det([1, 1; 2, 1]) = -1 = det([1, 1; 3, 2]); therefore,
a(3) = 3.
CROSSREFS
Sequence in context: A280332 A279939 A337748 * A307901 A232965 A249401
KEYWORD
nonn
AUTHOR
Peter Kagey, May 10 2017
STATUS
approved