login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307901
Expansion of 1/(1 - x * theta_4(x)), where theta_4() is the Jacobi theta function.
1
1, 1, -1, -3, -1, 7, 11, -5, -33, -25, 53, 123, 9, -297, -363, 323, 1273, 657, -2415, -4407, 957, 12069, 11465, -16887, -47915, -12939, 104431, 152029, -85529, -476579, -333905, 803237, 1752799, 11597, -4349949, -5019855, 5068735, 18311655, 8392559, -35953969
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
G.f.: Sum_{k>=0} x^k * theta_4(x)^k.
G.f.: 1/(1 - x * Sum_{k=-oo..oo} (-1)^k * x^(k^2)).
G.f.: 1/(1 - x * Product_{k>=1} (1 - x^k)/(1 + x^k)).
MAPLE
S:= series(1/(1-x*JacobiTheta4(0, x)), x, 101):
seq(coeff(S, x, j), j=0..100); # Robert Israel, Nov 03 2019
MATHEMATICA
nmax = 39; CoefficientList[Series[1/(1 - x EllipticTheta[4, 0, x]), {x, 0, nmax}], x]
nmax = 39; CoefficientList[Series[1/(1 - x Product[(1 - x^k)/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 04 2019
STATUS
approved