Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Nov 03 2019 05:01:26
%S 1,1,-1,-3,-1,7,11,-5,-33,-25,53,123,9,-297,-363,323,1273,657,-2415,
%T -4407,957,12069,11465,-16887,-47915,-12939,104431,152029,-85529,
%U -476579,-333905,803237,1752799,11597,-4349949,-5019855,5068735,18311655,8392559,-35953969
%N Expansion of 1/(1 - x * theta_4(x)), where theta_4() is the Jacobi theta function.
%H Robert Israel, <a href="/A307901/b307901.txt">Table of n, a(n) for n = 0..5045</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%F G.f.: Sum_{k>=0} x^k * theta_4(x)^k.
%F G.f.: 1/(1 - x * Sum_{k=-oo..oo} (-1)^k * x^(k^2)).
%F G.f.: 1/(1 - x * Product_{k>=1} (1 - x^k)/(1 + x^k)).
%p S:= series(1/(1-x*JacobiTheta4(0,x)),x,101):
%p seq(coeff(S,x,j),j=0..100); # _Robert Israel_, Nov 03 2019
%t nmax = 39; CoefficientList[Series[1/(1 - x EllipticTheta[4, 0, x]), {x, 0, nmax}], x]
%t nmax = 39; CoefficientList[Series[1/(1 - x Product[(1 - x^k)/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
%Y Cf. A002448, A015128, A032803, A299108.
%K sign
%O 0,4
%A _Ilya Gutkovskiy_, May 04 2019