login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196845
Table of elementary symmetric function a_k(3,4,...,n+2) (no 1 and 2).
3
1, 1, 3, 1, 7, 12, 1, 12, 47, 60, 1, 18, 119, 342, 360, 1, 25, 245, 1175, 2754, 2520, 1, 33, 445, 3135, 12154, 24552, 20160, 1, 42, 742, 7140, 40369, 133938, 241128, 181440, 1, 52, 1162, 14560, 111769, 537628, 1580508, 2592720, 1814400, 1, 63, 1734, 27342, 271929, 1767087, 7494416, 19978308, 30334320, 19958400
OFFSET
0,3
COMMENTS
For the symmetric functions a_k see a comment in A196841.
In general the triangle S_{i,j}(n,k), n>=k>=0, 1<=i<j<=n+2 is defined for n<i as a_k(1,2,...,n), and for n>=i as a_k(1,2,...,i-1,i+1,...,j-1,j+1,...,n+2).
a_0():=1. The present triangle is S_{1,2}(n,k) (no 1 and 2 admitted).
FORMULA
a(n,k) = 0 if n<k, a(n,k) = a_k(3,4,...,n+2), n>=0, k=0,...,n, with the elementary symmetric function a_k (see the comment above).
a(n,k) = sum(2^k*( |s(n+3,n+3-k+2*p)| -(S_1(n+1,k-1-2*p) +2*S_2(n+1,k-1-2*p))), p=0..floor(k/2)), with the Stirling numbers of the first kind s(n,m) = A048994(n,m), and the number triangles S_1(n,k)= A145324(n+1,k+1) and S_2(n,k) = A196841(n,k).
EXAMPLE
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 3
2: 1 7 12
3: 1 12 47 60
4: 1 18 119 342 360
5: 1 25 245 1175 2754 2520
6: 1 33 445 3135 12154 24552 20160
7: 1 42 742 7140 40369 133938 241128 181440
...
a(3,2) = a_2(3,4,5) = 3*4+3*5+4*5 = 47.
a(3,2) = 1*(|s(6,4)| - (1*14 + 2*13)) + 2*(|s(6,6)| -(1*0+2*0)) = 85 - 40 + 2(1-0) = 47.
a(4,3) = a_3(3,4,5,6) = 3*4*5+3*4*6+3*5*6+4*5*6 = 342.
a(4,3) = 1*(|s(7,4)| - (1*155 + 2*137)) + 2*(|s(7,6)| - (1*1 + 2*1)) = 735-429+2*(21-3) = 342.
CROSSREFS
Cf. A196841, A048994, A145324, A001710 (diagonal), A001711 (1st subdiagonal), A001712 (2nd subdiagonal), A055998 (k=1), A024183 (k=2), A024184 (k=3), A024185 (k=4).
Sequence in context: A307901 A232965 A249401 * A263446 A297192 A218592
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 26 2011
STATUS
approved