OFFSET
0,5
COMMENTS
FORMULA
a(n,k) = a_k(1, 2, ..., n) if 0 <= n < 5, and a_k(1, 2, 3, 4, 6, 7, ..., n+1) if n >= 5, with the elementary symmetric functions a_k defined in a comment to A196841.
a(n,k) = 0 if n < k, a(n,k) = |s(n+1, n+1-k)| if 0 <= n < 5, and
a(n,k) = sum((-5)^m*|s(n+2, n+2-k+m)|, m = 0..k) if n >= 5, with the Stirling numbers of the first kind s(n,m)=A048994(n,m).
EXAMPLE
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 1
2: 1 3 2
3: 1 6 11 6
4: 1 10 35 50 24
5: 1 16 95 260 324 144
6: 1 23 207 925 2144 2412 1008
7: 1 31 391 2581 9544 19564 20304 8064
...
a(4,0) = a_0(1, 2, 3, 4) := 1, a(4,1) = a_1(1, 2, 3, 4) = 10.
a(5,2) = a_2(1, 2, 3, 4, 6) = 1*2 + 1*3 + 1*4 + 1*6 + 2*3 + 2*4 + 2*6 + 3*4 + 3*6 + 4*6 = 95.
a(5,2) = 1*|s(7,5)| - 5*|s(7,6)| + 25*|s(7,7)| = 1*175 - 5*21 + 25*1 = 95.
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Oct 25 2011
STATUS
approved