login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table of the elementary symmetric functions a_k(1,2,3,4,6,...,n+1) (5 missing).
0

%I #14 Apr 03 2014 03:11:51

%S 1,1,1,1,3,2,1,6,11,6,1,10,35,50,24,1,16,95,260,324,144,1,23,207,925,

%T 2144,2412,1008,1,31,391,2581,9544,19564,20304,8064,1,40,670,6100,

%U 32773,105460,196380,190800,72576,1,50,1070,12800,93773,433190,1250980

%N Table of the elementary symmetric functions a_k(1,2,3,4,6,...,n+1) (5 missing).

%C For the symmetric functions a_k and the definition of the triangles S_j(n,k) see a comment in A196841. Here x(j) = j for j = 1, 2, 3, 4 and x(j) = j + 1 for j = 5, ..., n. This is the triangle S_5(n,k), n >= 0, k = 0..n. The first five rows coincide with those of triangle A094638.

%F a(n,k) = a_k(1, 2, ..., n) if 0 <= n < 5, and a_k(1, 2, 3, 4, 6, 7, ..., n+1) if n >= 5, with the elementary symmetric functions a_k defined in a comment to A196841.

%F a(n,k) = 0 if n < k, a(n,k) = |s(n+1, n+1-k)| if 0 <= n < 5, and

%F a(n,k) = sum((-5)^m*|s(n+2, n+2-k+m)|, m = 0..k) if n >= 5, with the Stirling numbers of the first kind s(n,m)=A048994(n,m).

%e n\k 0 1 2 3 4 5 6 7 ...

%e 0: 1

%e 1: 1 1

%e 2: 1 3 2

%e 3: 1 6 11 6

%e 4: 1 10 35 50 24

%e 5: 1 16 95 260 324 144

%e 6: 1 23 207 925 2144 2412 1008

%e 7: 1 31 391 2581 9544 19564 20304 8064

%e ...

%e a(4,0) = a_0(1, 2, 3, 4) := 1, a(4,1) = a_1(1, 2, 3, 4) = 10.

%e a(5,2) = a_2(1, 2, 3, 4, 6) = 1*2 + 1*3 + 1*4 + 1*6 + 2*3 + 2*4 + 2*6 + 3*4 + 3*6 + 4*6 = 95.

%e a(5,2) = 1*|s(7,5)| - 5*|s(7,6)| + 25*|s(7,7)| = 1*175 - 5*21 + 25*1 = 95.

%Y Cf. A094638, A145324,|A123319|, A196841, A196842, A196843.

%K nonn,easy,tabl

%O 0,5

%A _Wolfdieter Lang_, Oct 25 2011