login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196846 Table of elementary symmetric functions a_k(1,2,5,6,...,n+2) (no 3,4). 2
1, 1, 1, 1, 3, 2, 1, 8, 17, 10, 1, 14, 65, 112, 60, 1, 21, 163, 567, 844, 420, 1, 29, 331, 1871, 5380, 7172, 3360, 1, 38, 592, 4850, 22219, 55592, 67908, 30240, 1, 48, 972, 10770, 70719, 277782, 623828, 709320, 302400, 1, 59, 1500, 21462, 189189, 1055691, 3679430, 7571428, 8104920, 3326400 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

For the symmetric functions a_k see a comment in A196841.

The definition of the family of number triangles

S_{i,j}(n,k),n>=k>=0, 1<=i<j<=n+2, has been given in

A196845. The present triangle is S_{3,4}(n,k) (no 3 and 4

admitted). The first three lines coincide with those of

triangle A094638(n+1,k+1) which tabulates a_k(1,2,...,n).

LINKS

Table of n, a(n) for n=0..54.

FORMULA

a(n,k) = 0 if n<k, a(0,0) = 1, a(1,k) = a_k(1) for k=0,1,  a(2,k) = a_k(1,2) for k=0,1,2, and a(n,k) = a_k(1,2,5,6,...,n+2), n>=3; k=0..n, with the elementary symmetric functions a_k (see the comment above).

a(n,k) = |s(n+1,n+1-k)| for 0<=n<3,

a(n,k) = sum(((3*4)^m)*(|s(n+3,n+3-k+2*m)| - (3*S_3(n+1,k-1-2*m) + 4*S_4(n+1,k-1-2*m))),m = 0..floor(k/2)), with the Stirling numbers of the first kind s(n,m) = A048994(n,m), and the number triangles S_3(n,k)= A196842(n,k) and S_4(n,k)= A196843(n,k) (for negative k one puts the entries of these triangles to 0).

EXAMPLE

n\k   0    1    2     3      4      5      6       7 ...

0:    1

1:    1    1

2:    1    3    2

3:    1    8   17    10

4:    1   14   65   112     60

5:    1   21  163   567    844    420

6:    1   29  331  1871   5380   7172   3360

7:    1   38  592  4850  22219  55592  67908   30240

...

a(2,2)=a_2(1,2)=A094638(3,3)=1*2=2.

a(2,2) = |s(3,1)| = 2.

a(4,2) = a_2(1,2,5,6) = 1*2+1*5+1*6+2*5+2*6+5*6 = 65.

a(4,2) = 1*(|s(7,5)| - (3*S_3(5,1) + 4*S_4(5,1))) +

3*4*(|s(7,7)| -(3*0 + 4*0)) = 1*(175 -(3*18 + 4*17))

+ 12*1 = 65.

CROSSREFS

Cf. A094638 (a_k triangle), A196845 (no 1,2 triangle), A196842 (no 3), A196843 (no 4).

Sequence in context: A204144 A203992 A204019 * A101413 A101908 A290310

Adjacent sequences:  A196843 A196844 A196845 * A196847 A196848 A196849

KEYWORD

nonn,easy,tabl

AUTHOR

Wolfdieter Lang, Oct 27 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 19:41 EDT 2021. Contains 347564 sequences. (Running on oeis4.)