login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196846
Table of elementary symmetric functions a_k(1,2,5,6,...,n+2) (no 3,4).
2
1, 1, 1, 1, 3, 2, 1, 8, 17, 10, 1, 14, 65, 112, 60, 1, 21, 163, 567, 844, 420, 1, 29, 331, 1871, 5380, 7172, 3360, 1, 38, 592, 4850, 22219, 55592, 67908, 30240, 1, 48, 972, 10770, 70719, 277782, 623828, 709320, 302400, 1, 59, 1500, 21462, 189189, 1055691, 3679430, 7571428, 8104920, 3326400
OFFSET
0,5
COMMENTS
For the symmetric functions a_k see a comment in A196841.
The definition of the family of number triangles
S_{i,j}(n,k),n>=k>=0, 1<=i<j<=n+2, has been given in
A196845. The present triangle is S_{3,4}(n,k) (no 3 and 4
admitted). The first three lines coincide with those of
triangle A094638(n+1,k+1) which tabulates a_k(1,2,...,n).
FORMULA
a(n,k) = 0 if n<k, a(0,0) = 1, a(1,k) = a_k(1) for k=0,1, a(2,k) = a_k(1,2) for k=0,1,2, and a(n,k) = a_k(1,2,5,6,...,n+2), n>=3; k=0..n, with the elementary symmetric functions a_k (see the comment above).
a(n,k) = |s(n+1,n+1-k)| for 0<=n<3,
a(n,k) = sum(((3*4)^m)*(|s(n+3,n+3-k+2*m)| - (3*S_3(n+1,k-1-2*m) + 4*S_4(n+1,k-1-2*m))),m = 0..floor(k/2)), with the Stirling numbers of the first kind s(n,m) = A048994(n,m), and the number triangles S_3(n,k)= A196842(n,k) and S_4(n,k)= A196843(n,k) (for negative k one puts the entries of these triangles to 0).
EXAMPLE
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 1
2: 1 3 2
3: 1 8 17 10
4: 1 14 65 112 60
5: 1 21 163 567 844 420
6: 1 29 331 1871 5380 7172 3360
7: 1 38 592 4850 22219 55592 67908 30240
...
a(2,2)=a_2(1,2)=A094638(3,3)=1*2=2.
a(2,2) = |s(3,1)| = 2.
a(4,2) = a_2(1,2,5,6) = 1*2+1*5+1*6+2*5+2*6+5*6 = 65.
a(4,2) = 1*(|s(7,5)| - (3*S_3(5,1) + 4*S_4(5,1))) +
3*4*(|s(7,7)| -(3*0 + 4*0)) = 1*(175 -(3*18 + 4*17))
+ 12*1 = 65.
CROSSREFS
Cf. A094638 (a_k triangle), A196845 (no 1,2 triangle), A196842 (no 3), A196843 (no 4).
Sequence in context: A204144 A203992 A204019 * A375041 A101413 A101908
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 27 2011
STATUS
approved