login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table of winning positions in Tchoukaillon (or Mancala) solitaire.
6

%I #20 Apr 02 2015 16:18:32

%S 0,1,0,2,1,2,0,1,3,1,1,3,0,0,2,4,1,0,2,4,0,2,2,4,1,2,2,4,0,1,1,3,5,1,

%T 1,1,3,5,0,0,0,2,4,6,1,0,0,2,4,6,0,2,0,2,4,6,1,2,0,2,4,6,0,1,3,2,4,6,

%U 1,1,3,2,4,6,0,0,2,1,3,5,7,1,0,2,1,3,5,7

%N Table of winning positions in Tchoukaillon (or Mancala) solitaire.

%C Table read by rows where b(n,i) = the number of counters in the i-th position from the store of the unique winning Tchoukaillon board having n total counters.

%H D. Betten, <a href="http://dx.doi.org/10.1016/S0167-5060(08)70224-3">Kalahari and the Sequence "Sloane No. 377"</a>, Annals Discrete Math., 37, 51-58, 1988.

%H D. M. Broline and _Daniel E. Loeb_, <a href="http://arXiv.org/abs/math.CO/9502225">The combinatorics of Mancala-Type games: Ayo, Tchoukaillon and 1/Pi</a>, J. Undergrad. Math. Applic., vol. 16 (1995), pp. 21-36.

%H Brant Jones, Laura Taalman and Anthony Tongen, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.120.08.706">Solitaire Mancala Games and the Chinese Remainder Theorem</a>, Amer. Math. Monthly, 120 (2013), 706-724.

%F Let p(n) be the minimum j such that b(n,j) = 0. (This is A028920.)

%F Directly from the rules of Tchoukaillon, we find b(n+1,i) = (b(n,i) - 1 for 1 <= i < p(n), i for i = p(n), and b(n,i) for i > p(n)).

%F Also, b(n,i) = (n - Sum_{j=1..(i-1)} b(n,j)) mod (i+1).

%e The rows of b(n,i) begin

%e n\i 1 2 3 4 5 6

%e 1 1

%e 2 0 2

%e 3 1 2

%e 4 0 1 3

%e 5 1 1 3

%e 6 0 0 2 4

%e 7 1 0 2 4

%e 8 0 2 2 4

%e 9 1 2 2 4

%e 10 0 1 1 3 5

%e 11 1 1 1 3 5

%e 12 0 0 0 2 4 6

%e 13 1 0 0 2 4 6

%e 14 0 2 0 2 4 6

%e 15 1 2 0 2 4 6

%e 16 0 1 3 2 4 6

%e 17 1 1 3 2 4 6

%t s[list_] := Module[{x = Append[list, 0], i = 1}, While[x[[i]] =!= 0, x[[i]] = x[[i]] - 1; i = i + 1]; x[[i]] = i; If[Last@x == 0, Most[x], x]]; Prepend[Flatten@NestList[s, {}, 20],0] (* _Birkas Gyorgy_, Feb 26 2011 *)

%Y Cf. A002491, A028920, A007952, A028931, A028932, A028933.

%K nonn,tabl

%O 0,4

%A _N. J. A. Sloane_.

%E Formulas added by _Brant Jones_, Oct 14 2013