login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the number x satisfying x*e^x=4.
5

%I #13 May 14 2019 23:41:16

%S 1,2,0,2,1,6,7,8,7,3,1,9,7,0,4,2,9,3,9,2,1,2,0,7,4,1,6,5,4,9,5,1,5,3,

%T 4,4,7,5,0,1,5,1,2,5,2,1,8,2,9,6,2,5,9,8,1,7,3,9,2,0,3,5,9,0,7,0,0,6,

%U 3,4,1,3,2,9,8,1,7,7,2,6,7,7,2,2,7,8,2,6,1,0,4,9,7,6,5,6,8,3,7,7

%N Decimal expansion of the number x satisfying x*e^x=4.

%H G. C. Greubel, <a href="/A196517/b196517.txt">Table of n, a(n) for n = 1..5000</a>

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%e 1.2021678731970429392120741654951534475015125218296259...

%t Plot[{E^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]

%t t = x /. FindRoot[E^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]

%t RealDigits[t] (* A030175 *)

%t t = x /. FindRoot[E^x == 2/x, {x, 0.5, 1}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196515 *)

%t t = x /. FindRoot[E^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196516 *)

%t t = x /. FindRoot[E^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196517 *)

%t t = x /. FindRoot[E^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196518 *)

%t t = x /. FindRoot[E^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196519 *)

%t RealDigits[LambertW[4], 10, 50][[1]] (* _G. C. Greubel_, Nov 16 2017 *)

%o (PARI) lambertw(4) \\ _G. C. Greubel_, Nov 16 2017

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Oct 03 2011