login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249629
Number of strings of length n over a 4-letter alphabet that begin with a nontrivial palindrome.
10
0, 0, 4, 28, 124, 532, 2164, 8788, 35284, 141628, 567004, 2269948, 9081724, 36334492, 145345564, 581412508, 2325680284, 9302841652, 37211487124, 148846430068, 595386201844, 2381546731732, 9526188851284, 38104763100628, 152419060098004, 609676271166388, 2438705115439924, 9754820584849588
OFFSET
0,3
COMMENTS
A nontrivial palindrome is a palindrome of length 2 or greater. (I.e., "1" is a trivial palindrome, but "11" and "121" are nontrivial palindromes.)
For example, 0032 is a string of length 4 over a 4-letter alphabet that begins with a nontrivial palindrome (00).
4 divides a(n) for all n.
Number of walks of n steps that begin with a palindromic sequence on the complete graph K_4 with loops. (E.g., 0, 1, 1, 0, 3, 1, 2 is a valid walk with 7 steps and begins with the palindromic sequence '0110'.)
Limit_{n->oo} a(n)/4^n ~ 0.5415013252744246 is the probability that a random, infinite base-4 string begins with a nontrivial palindrome.
FORMULA
a(0) = 0; a(1) = 0; a(n+1) = 4*a(n) + 4^ceiling((n+1)/2) - a(ceiling((n+1)/2)).
EXAMPLE
for n=3 the a(3) = 28 solutions are: 000, 001, 002, 003, 010, 020, 030, 101, 110, 111, 112, 113, 121, 131, 202, 212, 220, 221, 222, 223, 232, 303, 313, 323, 330, 331, 332, 333.
MATHEMATICA
a249629[n_] := Block[{f},
f[0] = f[1] = 0;
f[x_] := 4*f[x - 1] + 4^Ceiling[x/2] - f[Ceiling[x/2]];
Table[f[i], {i, 0, n}]]; a249629[27] (* Michael De Vlieger, Dec 27 2014 *)
PROG
(Ruby) seq = [0, 0]; (2..N).each{ |i| seq << 4 * seq[i-1] + 4**((i+1)/2) - seq[(i+1)/2] }
(Haskell)
import Data.Ratio
a 0 = 0; a 1 = 0;
a n = 4 * a(n - 1) + 4^ceiling(n % 2) - a(ceiling(n % 2)) -- Peter Kagey, Aug 13 2015
(Magma) [0] cat [n le 1 select 0 else 4*Self(n-1) + 4^Ceiling((n)/2) - Self(Ceiling((n)/2)): n in [1..40]]; // Vincenzo Librandi, Aug 20 2015
CROSSREFS
Analogous sequences for k-letter alphabets: A248122 (k=3), A249638 (k=5), A249639 (k=6), A249640 (k=7), A249641 (k=8), A249642 (k=9), A249643 (k=10).
Sequence in context: A328685 A212900 A196514 * A131459 A231581 A223115
KEYWORD
easy,nonn,walk
AUTHOR
Peter Kagey, Nov 02 2014
STATUS
approved