Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Apr 04 2024 09:49:37
%S 0,4,28,124,444,1404,4092,11260,29692,75772,188412,458748,1097724,
%T 2588668,6029308,13893628,31719420,71827452,161480700,360710140,
%U 801112060,1769996284,3892314108,8522825724,18589155324,40399536124,87509958652
%N Partial sums of A100381.
%C Like any sequence with a linear recurrence, this has a Pisano period length modulo any k >= 1. The period lengths for this sequence are (modulo k >= 1) 1, 1, 6, 1, 20, 6, 21, 1, 18, 20, 110, 6, 156, 21, 60, 1, 136, 18, 342, 20, ....
%D Jolley, Summation of Series, Dover (1961), eq (53) page 10.
%H Vincenzo Librandi, <a href="/A196514/b196514.txt">Table of n, a(n) for n = 0..3000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-18,20,-8).
%F G.f.: 4*x / ( (x-1)*(2*x-1)^3 ).
%F a(n) = (n^2 - n + 2)*2^(n+1) - 4 = 4*A055580(n-1).
%F a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 8*a(n-4); a(0)=0, a(1)=4, a(2)=28, a(3)=124. - _Harvey P. Dale_, Jan 12 2016
%t Table[2^n*Binomial[n, 2], {n, 1, 27}] // Accumulate (* _Jean-François Alcover_, Jun 24 2013 *)
%t LinearRecurrence[{7,-18,20,-8},{0,4,28,124},30] (* _Harvey P. Dale_, Jan 12 2016 *)
%o (Magma) [(n^2-n+2)*2^(n+1)-4 : n in [0..30]]; // _Vincenzo Librandi_, Oct 05 2011
%o (PARI) a(n)=(n^2-n+2)<<(n+1)-4 \\ _Charles R Greathouse IV_, Oct 05 2011
%K nonn,easy,less
%O 0,2
%A _R. J. Mathar_, Oct 03 2011