login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359190
a(n) = Sum_{d|n} d * 4^(n/d-1).
2
1, 6, 19, 76, 261, 1074, 4103, 16536, 65593, 262686, 1048587, 4196644, 16777229, 67117098, 268436319, 1073774896, 4294967313, 17180003478, 68719476755, 274878432636, 1099511640197, 4398048608322, 17592186044439, 70368752620104, 281474976711961, 1125899940397134
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} k * x^k/(1 - 4 * x^k).
G.f.: Sum_{k>=1} 4^(k-1) * x^k/(1 - x^k)^2.
MATHEMATICA
a[n_] := DivisorSum[n, 4^(n/#-1)*# &]; Array[a, 26] (* Amiram Eldar, Aug 27 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, d*4^(n/d-1));
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-4*x^k)))
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, 4^(k-1)*x^k/(1-x^k)^2))
CROSSREFS
Sequence in context: A123950 A100191 A191585 * A220795 A026545 A041937
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 19 2022
STATUS
approved