login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123950
Expansion of g.f.: x^2*(1-2*x) / (1-3*x-3*x^2+2*x^3).
1
0, 1, 1, 6, 19, 73, 264, 973, 3565, 13086, 48007, 176149, 646296, 2371321, 8700553, 31923030, 117128107, 429752305, 1576795176, 5785386229, 21227039605, 77883687150, 285761407807, 1048481205661, 3846960466104, 14114802199681, 51788325586033
OFFSET
1,4
REFERENCES
Chang and Sederberg, Over and Over Again, MAA, 1997, Chapter 30
FORMULA
a(n) = 3*a(n-1) + 3*a(n-2) - 2*a(n-3).
a(n) = A100191(n-2) for n > 2. - Georg Fischer, Oct 21 2018
MAPLE
seq(coeff(series(x^2*(1-2*x)/(1-3*x-3*x^2+2*x^3), x, n+1), x, n), n = 1 .. 30); # Muniru A Asiru, Oct 21 2018
MATHEMATICA
M = {{0, 0, 1}, {0, 2, -2}, {1, -2, 1}}; v[1] = {0, 0, 1}; v[n_]:=v[n]=M.v[n-1]; Table[v[n][[1]], {n, 30}]
CoefficientList[Series[x^2*(1-2*x)/(1-3*x-3*x^2+2*x^3), {x, 0, 30}], x] (* G. C. Greubel, Aug 05 2019 *)
PROG
(PARI) concat(0, Vec(-x^2*(2*x-1)/(2*x^3-3*x^2-3*x+1)+O(x^130))) \\ Colin Barker, Feb 10 2015
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -2, 3, 3]^(n-1)*[0; 1; 1])[1, 1] \\ Charles R Greathouse IV, Jun 24 2015
(GAP) a:=[0, 1, 1];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-2*a[n-3]; od; a; # Muniru A Asiru, Oct 21 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x^2*(1-2*x)/(1-3*x-3*x^2+2*x^3) )); // G. C. Greubel, Aug 05 2019
(Sage) a=(x^2*(1-2*x)/(1-3*x-3*x^2+2*x^3)).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Aug 05 2019
CROSSREFS
Cf. A100191.
Sequence in context: A259804 A060579 A183326 * A100191 A191585 A359190
KEYWORD
nonn,easy,less
AUTHOR
EXTENSIONS
Definition replaced with the generating function by the Assoc. Eds. of the OEIS, Mar 28 2010
STATUS
approved