OFFSET
1,2
COMMENTS
Conjecture: if a term k is a perfect square > 1, then sqrt(k) is in the sequence A236068 (Primes p such that f(f(p)) is prime, where f(z) = z^2 + 1).
The conjecture is false. A counterexample is 296147^2 = 87703045609 where 296147 = 47 * 6301. - Robert Israel, Mar 05 2024
The primes of the sequence are in A157468.
All terms except 1 are congruent to 3, 5 or 9 (mod 10). - Robert Israel, Mar 05 2024
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
909 is in the sequence because 909 = 3^2*101 with 3 decompositions:
909 = 1*909 and (1+909)^2+1 = 910^2+1 = 828101 is prime;
909 = 3*303 and (3+303)^2+1 = 306^2+1 = 93637 is prime;
909 = 9*101 and (9+101)^2+1 = 110^2+1 = 12101 is prime.
MAPLE
filter:= proc(n) local F;
F:= select(t -> t^2 <= n, numtheory:-divisors(n));
andmap(t -> isprime((t + n/t)^2+1), F)
end proc:
select(filter, [seq(i, i=1..1000, 2)]); # Robert Israel, Mar 05 2024
MATHEMATICA
t={}; Do[ds=Divisors[n]; k=1; While[k<=(Length[ds]+1)/2&&(ok=PrimeQ[(ds[[k]]+ds[[-k]])^2+1]), k++]; If[ok, AppendTo[t, n]], {n, 1, 2000}]; t
PROG
(PARI) isok(k) = fordiv(k, d, if ((d<=k/d) && !isprime((d+k/d)^2+1), return(0)); ); return(1); \\ Michel Marcus, Dec 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 19 2022
STATUS
approved