OFFSET
1,2
COMMENTS
Numbers k such that 30*k and 30*k^2 are in A014574.
The first number k > 1 such that 30*k - 1, 30*k + 1, 30*k^2 - 1, 30*k^2 + 1, 30*k^3 - 1 and 30*k^3 + 1 are all prime is 266225.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
a(2) = 14 is a term because 30*14 - 1 = 419, 30*14 + 1 = 421, 30*14^2 - 1 = 5879, and 30*14^2 + 1 = 5881 are all prime.
MAPLE
select(k -> isprime(30*k-1) and isprime(30*k+1) and isprime(30*k^2-1) and isprime(30*k^2+1), [$1..10^5]);
MATHEMATICA
Select[Range[40000], AllTrue[{30*# - 1, 30*# + 1, 30*#^2 - 1, 30*#^2 + 1}, PrimeQ] &] (* Amiram Eldar, Dec 19 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Dec 18 2022
STATUS
approved