login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230557
The number of 123-avoiding simple involutions of length n.
0
1, 2, 0, 0, 2, 3, 2, 5, 10, 17, 22, 44, 68, 127, 184, 356, 530, 1017, 1502, 2906, 4312, 8351, 12388, 24067, 35748, 69577, 103404, 201642, 299882, 585691, 871498, 1704509, 2537522, 4969153, 7400782, 14508938, 21617096, 42422023, 63226948, 124191257, 185155568, 363985681, 542815792, 1067892398, 1592969006
OFFSET
1,2
COMMENTS
An interval in a permutation is a set of contiguous indices such that the set of values of these indices under the permutation is also contiguous. A permutation is simple if it has no proper intervals (those of length more than 1 and less than the whole permutation). - Charles R Greathouse IV, Nov 06 2013
LINKS
Miklós Bóna, Cheyne Homberger, Jay Pantone, and Vincent Vatter, Pattern-avoiding involutions: exact and asymptotic enumeration, arxiv:1310.7003, 2013.
FORMULA
G.f.: x*(-1-2*x+x^6+2*x^3+6*x^5+2*x^7+4*x^5*(-3*x^4-2*x^2+1)^(1/2)+2*x^7*(-3*x^4-2*x^2+1)^(1/2)+x^4*(-3*x^4-2*x^2+1)^(1/2)+2*x^6*(-3*x^4-2*x^2+1)^(1/2)-2*x*(-3*x^4-2*x^2+1)^(1/2)-(-3*x^4-2*x^2+1)^(1/2)+x^2+3*x^4)/(3*x^6+2*x^6*(-3*x^4-2*x^2+1)^(1/2)+5*x^4+3*x^4*(-3*x^4-2*x^2+1)^(1/2)+x^2-1-(-3*x^4-2*x^2+1)^(1/2)).
a(n) ~ (2*sqrt(3)+3 + (-1)^n*(2*sqrt(3)-3)) * 3^(n/2) / (12 * sqrt(2*Pi*n)). - Vaclav Kotesovec, Jan 27 2015
EXAMPLE
a(8) = 5 because there are 5 simple involutions of length 8 which avoid the pattern 123: 58371642, 64827153, 68375142, 75382614, and 75842613.
PROG
(PARI) x='x+O('x^66); Vec((-1-2*x+x^6+2*x^3+6*x^5+2*x^7+4*x^5*(-3*x^4-2*x^2+1)^(1/2)+2*x^7*(-3*x^4-2*x^2+1)^(1/2)+x^4*(-3*x^4-2*x^2+1)^(1/2)+2*x^6*(-3*x^4-2*x^2+1)^(1/2)-2*x*(-3*x^4-2*x^2+1)^(1/2)-(-3*x^4-2*x^2+1)^(1/2)+x^2+3*x^4)/(3*x^6+2*x^6*(-3*x^4-2*x^2+1)^(1/2)+5*x^4+3*x^4*(-3*x^4-2*x^2+1)^(1/2)+x^2-1-(-3*x^4-2*x^2+1)^(1/2))) \\ Joerg Arndt, Nov 05 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Jay Pantone, Nov 05 2013
STATUS
approved