OFFSET
1,2
COMMENTS
An interval in a permutation is a set of contiguous indices such that the set of values of these indices under the permutation is also contiguous. A permutation is simple if it has no proper intervals (those of length more than 1 and less than the whole permutation). - Charles R Greathouse IV, Nov 06 2013
LINKS
Miklós Bóna, Cheyne Homberger, Jay Pantone, and Vincent Vatter, Pattern-avoiding involutions: exact and asymptotic enumeration, arxiv:1310.7003, 2013.
FORMULA
G.f.: x*(-1-2*x+x^6+2*x^3+6*x^5+2*x^7+4*x^5*(-3*x^4-2*x^2+1)^(1/2)+2*x^7*(-3*x^4-2*x^2+1)^(1/2)+x^4*(-3*x^4-2*x^2+1)^(1/2)+2*x^6*(-3*x^4-2*x^2+1)^(1/2)-2*x*(-3*x^4-2*x^2+1)^(1/2)-(-3*x^4-2*x^2+1)^(1/2)+x^2+3*x^4)/(3*x^6+2*x^6*(-3*x^4-2*x^2+1)^(1/2)+5*x^4+3*x^4*(-3*x^4-2*x^2+1)^(1/2)+x^2-1-(-3*x^4-2*x^2+1)^(1/2)).
a(n) ~ (2*sqrt(3)+3 + (-1)^n*(2*sqrt(3)-3)) * 3^(n/2) / (12 * sqrt(2*Pi*n)). - Vaclav Kotesovec, Jan 27 2015
EXAMPLE
a(8) = 5 because there are 5 simple involutions of length 8 which avoid the pattern 123: 58371642, 64827153, 68375142, 75382614, and 75842613.
PROG
(PARI) x='x+O('x^66); Vec((-1-2*x+x^6+2*x^3+6*x^5+2*x^7+4*x^5*(-3*x^4-2*x^2+1)^(1/2)+2*x^7*(-3*x^4-2*x^2+1)^(1/2)+x^4*(-3*x^4-2*x^2+1)^(1/2)+2*x^6*(-3*x^4-2*x^2+1)^(1/2)-2*x*(-3*x^4-2*x^2+1)^(1/2)-(-3*x^4-2*x^2+1)^(1/2)+x^2+3*x^4)/(3*x^6+2*x^6*(-3*x^4-2*x^2+1)^(1/2)+5*x^4+3*x^4*(-3*x^4-2*x^2+1)^(1/2)+x^2-1-(-3*x^4-2*x^2+1)^(1/2))) \\ Joerg Arndt, Nov 05 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Jay Pantone, Nov 05 2013
STATUS
approved