The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145722 Expansion of f(q) * f(q^5) / phi(-q^2)^2 in powers of q where f(), phi() are Ramanujan theta functions. 5
 1, 1, 3, 4, 8, 12, 21, 30, 48, 68, 102, 143, 207, 284, 400, 542, 744, 996, 1344, 1776, 2361, 3088, 4050, 5248, 6808, 8742, 11232, 14310, 18224, 23052, 29133, 36601, 45936, 57360, 71528, 88812, 110110, 135990, 167704, 206108, 252912, 309408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015 MathOverflow, Up to 2000..., 2016. Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-1/4) * eta(q^4) * eta(q^10)^3 / (eta(q) * eta(q^2) * eta(q^5) * eta(q^20)) in powers of q. Euler transform of period 20 sequence [ 1, 2, 1, 1, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 1, 2, 1, 0, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 20^(-1/2) g(t), where q = exp(2 Pi i t) and g() is the g.f. for A145723. G.f.: Product_{k>0} (1 + x^(2*k)) * (1 - x^(10*k)) * (1 + x^(5*k)) / ((1 - x^k) * (1 + x^(10*k))). a(n) = A036026(2*n). a(n) ~ exp(2*Pi*sqrt(n/5)) / (4 * 5^(3/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015 EXAMPLE G.f. = 1 + x + 3*x^2 + 4*x^3 + 8*x^4 + 12*x^5 + 21*x^6 + 30*x^7 + 48*x^8 + ... G.f. = q + q^5 + 3*q^9 + 4*q^13 + 8*q^17 + 12*q^21 + 21*q^25 + 30*q^29 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ -x]  QPochhammer[ -x^5] / EllipticTheta[ 4, 0, x^2]^2, {x, 0, n}]; (* Michael Somos, Aug 26 2015 *) nmax=60; CoefficientList[Series[Product[(1+x^(2*k)) * (1-x^(10*k)) * (1+x^(5*k)) / ((1-x^k) * (1 + x^(10*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^10 + A)^3 / (eta(x + A) * eta(x^2 + A) * eta(x^5 + A) * eta(x^20 + A)), n))}; CROSSREFS Cf. A036026. Sequence in context: A088953 A281612 A025034 * A147622 A173534 A074331 Adjacent sequences:  A145719 A145720 A145721 * A145723 A145724 A145725 KEYWORD nonn AUTHOR Michael Somos, Oct 23 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 03:22 EST 2020. Contains 338865 sequences. (Running on oeis4.)