login
A286097
Number of partitions of n such that each part is no more than 4 more than the sum of all smaller parts.
2
1, 1, 2, 3, 5, 6, 10, 13, 20, 26, 37, 48, 68, 86, 119, 152, 204, 258, 342, 428, 560, 698, 897, 1114, 1421, 1748, 2210, 2712, 3390, 4140, 5140, 6240, 7702, 9314, 11402, 13741, 16742, 20071, 24333, 29087, 35056, 41770, 50137, 59503, 71148, 84195, 100213, 118275, 140307, 165041, 195139
OFFSET
0,3
COMMENTS
Generalization of Adams-Watters's criterion for complete partitions, that each part is no more than 1 more than the sum of all smaller parts.
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, May 24 2018
EXAMPLE
For n = 8, a(8) = 20 counts all partitions of 8 except (8) and (7,1).
MATHEMATICA
Table[Count[IntegerPartitions@n, w_ /; And[Last@w <= 4, NoneTrue[ w - Rest@ PadRight[4 + Reverse@Accumulate@Reverse@w, Length@w + 1, Last@w], # > 0 &]]], {n, 50}] (* George Beck, May 17 2017, Version 11.1.1, adapted from A286929 *)
CROSSREFS
Cf. A126796.
Sequence in context: A145724 A039843 A305937 * A287483 A014853 A131627
KEYWORD
nonn
AUTHOR
Brian Hopkins, May 16 2017
STATUS
approved