This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286095 Composite numbers n such that tau(n) (number of divisors of n) is prime and sigma(n) (sum of divisors of n) is not prime. 1
 49, 81, 121, 169, 361, 529, 625, 841, 961, 1024, 1369, 1849, 2209, 2809, 3721, 4489, 5329, 6241, 6889, 9409, 10609, 11449, 11881, 12769, 14641, 16129, 18769, 19321, 22201, 22801, 24649, 26569, 32041, 32761, 36481, 37249, 38809, 39601, 44521, 49729, 51529, 52441, 54289 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If sigma(n) is prime (A023194) then tau(n) is prime too. (See Crux Mathematicorum link.) But the reverse is false; the numbers which verify tau(n) prime and sigma(n) not prime are in the sequence A275938. All odd primes belong to the sequence A275938, but there are also in this sequence composite numbers which are all prime powers, these prime powers are here. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Peter A. Lindstrom and Andy Liu, Problem 465, Crux Mathematicorum, page 188, Vol.6 , Jun. 80. EXAMPLE tau(49) = 3 and sigma(49) = 57 = 3 * 19. MAPLE for n from 2 to 550000 do p(n):=tau(n); if not isprime(n) and is prime(p(n)) and not isprime(sigma(n)) then print (n, p(n), sigma(n)) else fi; od: # alternative N:= 10^5: # to get all terms <= N P:= select(isprime, [2, seq(i, i=3..isqrt(N), 2)]): S:= {}: for p in P do   k:= 1:   do     k:= nextprime(k+1)-1;     if p^k > N then break fi;     if not isprime((p^(k+1)-1)/(p-1)) then S:= S union {p^k} fi   od od: sort(convert(S, list)); # Robert Israel, Jun 05 2017 MATHEMATICA Select[Range[10^5], Function[n, And[CompositeQ@ n, Map[PrimeQ@ DivisorSigma[#, n] &, {0, 1}] == {True, False}]]] (* Michael De Vlieger, May 24 2017 *) PROG (PARI) lista(nn) = {forcomposite(n=1, nn, if (isprime(numdiv(n)) && !isprime(sigma(n)), print1(n, ", ")); ); } \\ Michel Marcus, May 24 2017 CROSSREFS Cf. A000005, A000203, A023194, A275938. Sequence in context: A056938 A267986 A207638 * A106311 A006832 A250074 Adjacent sequences:  A286092 A286093 A286094 * A286096 A286097 A286098 KEYWORD nonn AUTHOR Bernard Schott, May 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 05:26 EST 2019. Contains 319207 sequences. (Running on oeis4.)