login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A343000
Discriminants of cyclic cubic fields.
8
49, 81, 169, 361, 961, 1369, 1849, 3721, 3969, 4489, 5329, 6241, 8281, 9409, 10609, 11881, 13689, 16129, 17689, 19321, 22801, 24649, 26569, 29241, 32761, 37249, 39601, 44521, 47089, 49729, 52441, 58081, 61009, 67081, 73441, 76729, 77841, 80089, 90601, 94249, 97969
OFFSET
1,1
COMMENTS
Square terms in A006832.
Numbers of the form k^2 where A160498(k) >= 2.
Each term k^2 is associated with A343003(k) cyclic cubic fields.
Let D be a discriminant of a cubic field F, then F is a cyclic cubic field if and only if D is a square. For D = k^2, k must be of the form (p_1)*(p_2)*...*(p_t) or 9*(p_1)*(p_2)*...*(p_{t-1}) with distinct primes p_i == 1 (mod 3), in which case there are exactly 2^(t-1) = 2^(omega(k)-1) (cyclic) cubic fields with discriminant D. See Page 17, Theorem 2.7 of the Ka Lun Wong link.
LINKS
Wikipedia, Cubic field
Ka Lun Wong, Maximal Unramified Extensions of Cyclic Cubic Fields, (2011), Theses and Dissertations, 2781.
FORMULA
a(n) = A343001(n)^2.
EXAMPLE
49 = 7^2 is a term since it is the discriminant of the cyclic cubic field Q[x]/(x^3 - x^2 + x + 1).
81 = 9^2 is a term since it is the discriminant of the cyclic cubic field Q[x]/(x^3 - 3x - 1).
PROG
(PARI) isA343000(n) = if(issquare(n)&&n>1, my(k=sqrtint(n), L=factor(k), w=omega(k)); for(i=1, w, if(!((L[i, 1]%3==1 && L[i, 2]==1) || L[i, 1]^L[i, 2] == 9), return(0))); 1)
CROSSREFS
Discriminants and their square roots of cyclic cubic fields:
At least 1 associated cyclic cubic field: this sequence, A343001.
Exactly 1 associated cyclic cubic field: A343022, A002476 U {9}.
At least 2 associated cyclic cubic fields: A343024, A343025.
Exactly 2 associated cyclic cubic fields: A343002, A343003.
Sequence in context: A286095 A106311 A006832 * A343022 A250074 A247678
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Apr 02 2021
STATUS
approved