login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131796
Expansion of chi(-q^3)^2 * chi(-q^5)^2 / (chi(-q) * chi(-q^15)) in powers of q where chi() is a Ramanujan theta function.
3
1, 1, 1, 0, 0, -1, -1, 0, 1, 0, -1, 0, 0, 1, 2, 1, -2, -3, -1, 1, 2, 3, 0, -3, -1, 2, 2, 0, -2, -6, -3, 4, 7, 3, -2, -5, -6, 2, 8, 3, -5, -6, -2, 4, 12, 7, -10, -15, -6, 5, 13, 12, -4, -18, -7, 11, 14, 6, -10, -24, -14, 20, 32, 12, -12, -29, -24, 9, 36, 15, -22, -30, -13, 22, 50, 27, -36, -63, -26, 24, 56, 45, -22, -69, -30, 42, 62
OFFSET
0,15
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 30 sequence [ 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v^2 + u*(2 - 4*v + u*v).
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(15*k)) / ((1 + x^(3*k)) * (1 + x^(5*k)))^2.
a(n) = A131794(n) = -A131797(n) unless n=0.
EXAMPLE
G.f. = 1 + q + q^2 - q^5 - q^6 + q^8 - q^10 + q^13 + 2*q^14 + q^15 - 2*q^16 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3, q^6] QPochhammer[ q^5, q^10])^2 / (QPochhammer[ q, q^2] QPochhammer[ q^15, q^30]), {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^30 + A) / (eta(x + A) * eta(x^15 + A)) * (eta(x^3 + A) * eta(x^5 + A) / (eta(x^6 + A) * eta(x^10 + A)))^2, n))};
CROSSREFS
Sequence in context: A145782 A131797 A145727 * A131794 A145726 A322984
KEYWORD
sign
AUTHOR
Michael Somos, Jul 16 2006
STATUS
approved