login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131797
Expansion of eta(q) * eta(q^15) / (eta(q^6) * eta(q^10)) in powers of q.
6
1, -1, -1, 0, 0, 1, 1, 0, -1, 0, 1, 0, 0, -1, -2, -1, 2, 3, 1, -1, -2, -3, 0, 3, 1, -2, -2, 0, 2, 6, 3, -4, -7, -3, 2, 5, 6, -2, -8, -3, 5, 6, 2, -4, -12, -7, 10, 15, 6, -5, -13, -12, 4, 18, 7, -11, -14, -6, 10, 24, 14, -20, -32, -12, 12, 29, 24, -9, -36, -15
OFFSET
0,15
LINKS
FORMULA
Euler transform of period 30 sequence [ -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, -2, -1, -1, 0, -1, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v*(u^2 - v) - 2 * u * (u-1).
G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = 2 * g(t) where q = exp(2 Pi i t) and g() is the g.f. for A094022.
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(15*k)) / ((1 - x^(6*k)) * (1 - x^(10*k))).
a(n) = -A131794(n) = -A131796(n) unless n=0.
Convolution inverse of A094023.
a(n) = (-1)^n * A145727(n). - Michael Somos, Nov 11 2015
EXAMPLE
G.f. = 1 - q - q^2 + q^5 + q^6 - q^8 + q^10 - q^13 - 2*q^14 - q^15 + 2*q^16 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^15] / (QPochhammer[ q^6] QPochhammer[ q^10]), {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^15 + A) / (eta(x^6 + A) * eta(x^10 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 16 2007
STATUS
approved