login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082833
Decimal expansion of Kempner series Sum_{k >= 1, k has no digit 4 in base 10} 1/k.
12
2, 1, 3, 2, 7, 4, 6, 5, 7, 9, 9, 5, 9, 0, 0, 3, 6, 6, 8, 6, 6, 3, 9, 4, 0, 1, 4, 8, 6, 9, 3, 9, 5, 1, 2, 8, 4, 3, 7, 5, 0, 9, 5, 1, 7, 0, 3, 2, 7, 0, 0, 2, 1, 8, 1, 7, 2, 5, 1, 1, 8, 9, 5, 4, 1, 9, 7, 7, 8, 8, 4, 2, 7, 2, 4, 5, 1, 3, 3, 5, 3, 7, 5, 3, 8, 1, 2, 0, 1, 3, 0, 2, 8, 4, 0, 6, 9, 3, 5, 4, 7, 7, 8, 9, 7
OFFSET
2,1
COMMENTS
Numbers with a digit 4 (A011534) have asymptotic density 1, i.e., here almost all terms are removed from the harmonic series, which makes convergence less surprising. See A082839 (the analog for digit 0) for more information about such so-called Kempner series. - M. F. Hasler, Jan 13 2020
REFERENCES
Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.
LINKS
Robert Baillie, Sums of reciprocals of integers missing a given digit, Amer. Math. Monthly, 86 (1979), 372-374.
Robert Baillie, Summing the curious series of Kempner and Irwin, arXiv:0806.4410 [math.CA], 2008-2015. [From Robert G. Wilson v, Jun 01 2009]
Wikipedia, Kempner series. [From M. F. Hasler, Jan 13 2020]
Wolfram Library Archive, KempnerSums.nb (8.6 KB) - Mathematica Notebook, Summing Kempner's Curious (Slowly-Convergent) Series [From Robert G. Wilson v, Jun 01 2009]
FORMULA
Equals Sum_{k in A052406\{0}} 1/k, where A052406 = numbers with no digit 3. - M. F. Hasler, Jan 15 2020
EXAMPLE
21.32746579959003668663940148693951284375095170327002181725118954... - Robert G. Wilson v, Jun 01 2009
MATHEMATICA
(* see the Mmca in Wolfram Library Archive *) (* Robert G. Wilson v, Jun 01 2009 *)
PROG
(PARI) sumpos(k=2, 1/A052406(k)) \\ For illustration only, slow and not very precise: with \p19 takes 2 sec to get 5 digits right. - M. F. Hasler, Jan 13 2020
CROSSREFS
Cf. A002387, A024101, A052406 (numbers with no 4), A011534 (numbers with a 4).
Cf. A082830, A082831, A082832, A082834, A082835, A082836, A082837, A082838, A082839 (analog for digits 1, 2, ..., 9 and 0).
Sequence in context: A144238 A319622 A348747 * A101709 A005247 A363550
KEYWORD
nonn,cons,base
AUTHOR
Robert G. Wilson v, Apr 14 2003
EXTENSIONS
More terms from Robert G. Wilson v, Jun 01 2009
STATUS
approved