OFFSET
0,3
COMMENTS
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..150 (terms n=1..65 from T. D. Noe)
FORMULA
a(n) = T(n(n+1),2n-2,n), where T(k,p,m) is a recursive function that gives the number of partitions of k into p parts of 0..m. It is defined T(k,p,m) = sum_{i=1..m} T(k-i,p-1,i), with the boundary conditions T(0,p,m)=1 and T(k,0,m)=0 for all positive k, p and m. - T. D. Noe, Dec 19 2006
a(n) = coefficient of q^(n*(n-1)) in q-binomial(3*n-2, n). - Max Alekseyev, Jun 16 2023
a(n) ~ 3^(3*n - 3/2) / (Pi * n^2 * 2^(2*n - 1)). - Vaclav Kotesovec, Jun 17 2023
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
<n, 0, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i, t-1))))
end:
a:= n-> b(n*(n-1), n, 2*(n-1)):
seq(a(n), n=0..25); # Alois P. Heinz, May 15 2016
MATHEMATICA
T[0, p_, m_]=1; T[k_, 0, m_]=0; T[k_, p_, m_]:=T[k, p, m]=Sum[T[k+i, p-1, -i], {i, -m, -1}]; Table[T[n(n-1), 2n-2, n], {n, 40}] (* T. D. Noe, Dec 19 2006 *)
PROG
(Sage) def a039744(n): return gaussian_binomial(3*n-2, n)[n*(n-1)] # Max Alekseyev, Jun 16 2023
(PARI) a039744(n) = polcoef(matpascal(3*n-1, x)[3*n-1, n+1], n*(n-1)); \\ Max Alekseyev, Jun 16 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Bill Daly (bill.daly(AT)tradition.co.uk)
EXTENSIONS
Definition corrected by Jozsef Pelikan (pelikan(AT)cs.elte.hu), Dec 05 2006
More terms from T. D. Noe, Dec 19 2006
a(0)=1 prepended by Alois P. Heinz, May 15 2016
STATUS
approved