login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways n*(n-1) can be partitioned into the sum of 2*(n-1) integers in the range 0..n.
5

%I #25 Nov 03 2023 11:57:28

%S 1,1,2,5,18,73,338,1656,8512,45207,246448,1371535,7764392,44585180,

%T 259140928,1521967986,9020077206,53885028921,324176252022,

%U 1962530559999,11947926290396,73108804084505,449408984811980,2774152288318052,17190155366056138,106894140685782646

%N Number of ways n*(n-1) can be partitioned into the sum of 2*(n-1) integers in the range 0..n.

%C An upper bound on A007878.

%C The indices of the odd terms appear to be A118113. - _T. D. Noe_, Dec 19 2006

%H Alois P. Heinz, <a href="/A039744/b039744.txt">Table of n, a(n) for n = 0..150</a> (terms n=1..65 from T. D. Noe)

%F a(n) = T(n(n+1),2n-2,n), where T(k,p,m) is a recursive function that gives the number of partitions of k into p parts of 0..m. It is defined T(k,p,m) = sum_{i=1..m} T(k-i,p-1,i), with the boundary conditions T(0,p,m)=1 and T(k,0,m)=0 for all positive k, p and m. - _T. D. Noe_, Dec 19 2006

%F a(n) = coefficient of q^(n*(n-1)) in q-binomial(3*n-2, n). - _Max Alekseyev_, Jun 16 2023

%F a(n) ~ 3^(3*n - 3/2) / (Pi * n^2 * 2^(2*n - 1)). - _Vaclav Kotesovec_, Jun 17 2023

%p b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i

%p <n, 0, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i, t-1))))

%p end:

%p a:= n-> b(n*(n-1), n, 2*(n-1)):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, May 15 2016

%t T[0,p_,m_]=1; T[k_,0,m_]=0; T[k_,p_,m_]:=T[k,p,m]=Sum[T[k+i,p-1,-i], {i,-m,-1}]; Table[T[n(n-1),2n-2,n], {n,40}] (* _T. D. Noe_, Dec 19 2006 *)

%o (Sage) def a039744(n): return gaussian_binomial(3*n-2, n)[n*(n-1)] # _Max Alekseyev_, Jun 16 2023

%o (PARI) a039744(n) = polcoef(matpascal(3*n-1, x)[3*n-1, n+1], n*(n-1)); \\ _Max Alekseyev_, Jun 16 2023

%Y Cf. A007878, A118113, A362967.

%K nonn

%O 0,3

%A Bill Daly (bill.daly(AT)tradition.co.uk)

%E Definition corrected by Jozsef Pelikan (pelikan(AT)cs.elte.hu), Dec 05 2006

%E More terms from _T. D. Noe_, Dec 19 2006

%E a(0)=1 prepended by _Alois P. Heinz_, May 15 2016