login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Maximal coefficient among the polynomials in row n of the triangle of q-binomial coefficients.
5

%I #33 Sep 25 2021 04:16:11

%S 1,1,1,1,2,2,3,5,8,12,20,32,58,94,169,289,526,910,1667,2934,5448,9686,

%T 18084,32540,61108,110780,208960,381676,723354,1328980,2527074,

%U 4669367,8908546,16535154,31630390,58965214,113093022,211591218,406680465,763535450,1470597342,2769176514,5342750699,10089240974

%N Maximal coefficient among the polynomials in row n of the triangle of q-binomial coefficients.

%C q-binomial coefficients are polynomials in q with integer coefficients.

%C Is A055606 a shifted version of this sequence?

%H Vaclav Kotesovec, <a href="/A277218/b277218.txt">Table of n, a(n) for n = 0..200</a>

%H E. Friedman and M. Keith, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/KEITH/carpet.html">Magic Carpets</a>, J. Int Sequences, 3 (2000), #P.00.2.5.

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/q-BinomialCoefficient.html">q-Binomial Coefficient</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Q-binomial">q-binomial</a>

%F a(n) ~ sqrt(3) * 2^(n+2) / (Pi * n^2). - _Vaclav Kotesovec_, Oct 09 2016

%e Row 5 of the triangle of q-binomial coefficients is [1, 1 + q + q^2 + q^3 + q^4, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + q^2 + q^3 + q^4, 1], so the max coefficient is 2. Hence a(5) = 2.

%p f:= proc(n) local k, c, v, q;

%p uses QDifferenceEquations;

%p v:= 0:

%p for k from 0 to n do

%p c:= coeffs(expand(expand(QBinomial(n,k,q))),q);

%p v:= max(v, max(c));

%p od:

%p v

%p end proc:

%p map(f, [$0..50]); # _Robert Israel_, Oct 05 2016

%t Table[Coefficient[Expand[FunctionExpand[QBinomial[n, Floor[n/2], q]]], q, Floor[n^2/8]], {n, 0, 30}] (* _Vladimir Reshetnikov_, Sep 24 2021 *)

%Y Cf. A002838, A022166, A029895, A055606, A076822.

%K nonn

%O 0,5

%A _Vladimir Reshetnikov_, Oct 05 2016