login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277219
Triangle read by rows: T(n,k) is the number of independent sets of size k over all simple labeled graphs on n nodes, n>=0, 0<=k<=n.
2
1, 1, 1, 2, 4, 1, 8, 24, 12, 1, 64, 256, 192, 32, 1, 1024, 5120, 5120, 1280, 80, 1, 32768, 196608, 245760, 81920, 7680, 192, 1, 2097152, 14680064, 22020096, 9175040, 1146880, 43008, 448, 1, 268435456, 2147483648, 3758096384, 1879048192, 293601280, 14680064, 229376, 1024, 1
OFFSET
0,4
COMMENTS
Equivalently, T(n,k) is the number of size k cliques over all simple labeled graphs on n vertices.
LINKS
Robert Israel, Table of n, a(n) for n = 0..3402 (rows 0 to 81, flattened)
FORMULA
T(n,k) = 2^binomial(n,2)*binomial(n,k)/2^binomial(k,2).
EXAMPLE
Triangle begins:
1;
1, 1;
2, 4, 1;
8, 24, 12, 1;
64, 256, 192, 32, 1;
1024, 5120, 5120, 1280, 80, 1;
32768, 196608, 245760, 81920, 7680, 192, 1;
...
MAPLE
seq(seq(2^(n*(n-1)/2-k*(k-1)/2)*binomial(n, k), k=0..n), n=0..10); # Robert Israel, Oct 06 2016
MATHEMATICA
Table[Table[2^Binomial[n, 2] Binomial[n, k]/2^Binomial[k, 2], {k, 0, n}], {n, 0, 7}] // Grid
CROSSREFS
Cf. A079491 (row sums), A006125 (column k=0), A095340 (column k=1), A095351 (column k = 2).
Sequence in context: A354866 A233034 A204132 * A204135 A077387 A057551
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Oct 05 2016
STATUS
approved