login
A302862
a(n) = [x^n] (1 + theta_3(x))^n/(2^n*(1 - x)), where theta_3() is the Jacobi theta function.
7
1, 2, 4, 8, 20, 57, 160, 422, 1076, 2780, 7449, 20462, 56348, 153909, 418268, 1139703, 3126068, 8618611, 23801146, 65708424, 181391905, 501296216, 1387834518, 3848187985, 10680579812, 29660831057, 82415406493, 229156296047, 637659848888, 1775648562970, 4947475298595
OFFSET
0,2
COMMENTS
a(n) = number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_n)^2 <= n.
MATHEMATICA
Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/(2^n (1 - x)), {x, 0, n}], {n, 0, 30}]
Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, 0, n}]^n, {x, 0, n}], {n, 0, 30}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 14 2018
STATUS
approved