login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098482
Expansion of 1/sqrt((1-x)^2-4*x^4).
5
1, 1, 1, 1, 3, 7, 13, 21, 37, 73, 147, 283, 531, 1007, 1953, 3817, 7423, 14371, 27877, 54333, 106189, 207585, 405743, 793719, 1554889, 3049525, 5984803, 11751067, 23086695, 45388291, 89289765, 175746797, 346077153, 681795925, 1343790319
OFFSET
0,5
COMMENTS
From Joerg Arndt, Jul 01 2011: (Start)
Empirical: Number of lattice paths from (0,0) to (n,n) using steps (4,0), (0,4), (1,1).
It appears that 1/sqrt((1-x)^2-4*x^s) is the g.f. for lattice paths from (0,0) to (n,n) using steps (s,0), (0,s), (1,1).
Empirical: Number of lattice paths from (0,0) to (n,n) using steps (3,1), (1,3), (1,1). (End)
1/sqrt((1-x)^2-4*r*x^4) expands to sum(k=0..floor(n/2), binomial(n-2*k,k)*binomial(n-3*k,k)*r^k ).
LINKS
Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
FORMULA
a(n) = sum(k=0..floor(n/2), binomial(n-2*k, k)*binomial(n-3*k, k) ).
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 4*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ 2^(n+1/2) / sqrt(3*Pi*n). - Vaclav Kotesovec, Jun 23 2014
G.f.: 1/(1 - x - 2*x^4/(1 - x - x^4/(1 - x - x^4/(1 - x - x^4/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2021
EXAMPLE
From Joerg Arndt, Jul 01 2011: (Start)
The triangle of lattice paths from (0,0) to (n,k) using steps (3,1), (1,3), (1,1) begins
1;
0, 1;
0, 0, 1;
0, 1, 0, 1;
0, 0, 2, 0, 3;
0, 0, 0, 3, 0, 7;
0, 0, 1, 0, 4, 0, 13;
0, 0, 0, 3, 0, 8, 0, 21;
0, 0, 0, 0, 6, 0, 18, 0, 37;
0, 0, 0, 1, 0, 10, 0, 37, 0, 73;
The triangle of lattice paths from (0,0) to (n,k) using steps (4,0), (0,4), (1,1) begins
1;
0, 1;
0, 0, 1;
0, 0, 0, 1;
1, 0, 0, 0, 3;
0, 2, 0, 0, 0, 7;
0, 0, 3, 0, 0, 0, 13;
0, 0, 0, 4, 0, 0, 0, 21;
1, 0, 0, 0, 8, 0, 0, 0, 37;
0, 3, 0, 0, 0, 18, 0, 0, 0, 73;
The diagonals of both appear to be this sequence. (End)
MAPLE
seq(add(binomial(n-3*k, k)*binomial(n-2*k, k), k=0..floor(n/3)), n=0..34); # Zerinvary Lajos, Apr 03 2007
MATHEMATICA
CoefficientList[Series[1/Sqrt[(1-x)^2-4*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
PROG
(PARI) /* as lattice paths, assuming the first comment is true */
/* same as in A092566 but use either of */
steps=[[4, 0], [0, 4], [1, 1]];
steps=[[3, 1], [1, 3], [1, 1]];
/* Joerg Arndt, Jul 01 2011 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 10 2004
STATUS
approved