Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Nov 19 2021 09:45:23
%S 1,1,1,1,3,7,13,21,37,73,147,283,531,1007,1953,3817,7423,14371,27877,
%T 54333,106189,207585,405743,793719,1554889,3049525,5984803,11751067,
%U 23086695,45388291,89289765,175746797,346077153,681795925,1343790319
%N Expansion of 1/sqrt((1-x)^2-4*x^4).
%C From _Joerg Arndt_, Jul 01 2011: (Start)
%C Empirical: Number of lattice paths from (0,0) to (n,n) using steps (4,0), (0,4), (1,1).
%C It appears that 1/sqrt((1-x)^2-4*x^s) is the g.f. for lattice paths from (0,0) to (n,n) using steps (s,0), (0,s), (1,1).
%C Empirical: Number of lattice paths from (0,0) to (n,n) using steps (3,1), (1,3), (1,1). (End)
%C 1/sqrt((1-x)^2-4*r*x^4) expands to sum(k=0..floor(n/2), binomial(n-2*k,k)*binomial(n-3*k,k)*r^k ).
%H Vincenzo Librandi, <a href="/A098482/b098482.txt">Table of n, a(n) for n = 0..200</a>
%H Steffen Eger, <a href="http://arxiv.org/abs/1511.00622">On the Number of Many-to-Many Alignments of N Sequences</a>, arXiv:1511.00622 [math.CO], 2015.
%F a(n) = sum(k=0..floor(n/2), binomial(n-2*k, k)*binomial(n-3*k, k) ).
%F D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 4*(n-2)*a(n-4). - _Vaclav Kotesovec_, Jun 23 2014
%F a(n) ~ 2^(n+1/2) / sqrt(3*Pi*n). - _Vaclav Kotesovec_, Jun 23 2014
%F G.f.: 1/(1 - x - 2*x^4/(1 - x - x^4/(1 - x - x^4/(1 - x - x^4/(1 - ...))))), a continued fraction. - _Ilya Gutkovskiy_, Nov 19 2021
%e From _Joerg Arndt_, Jul 01 2011: (Start)
%e The triangle of lattice paths from (0,0) to (n,k) using steps (3,1), (1,3), (1,1) begins
%e 1;
%e 0, 1;
%e 0, 0, 1;
%e 0, 1, 0, 1;
%e 0, 0, 2, 0, 3;
%e 0, 0, 0, 3, 0, 7;
%e 0, 0, 1, 0, 4, 0, 13;
%e 0, 0, 0, 3, 0, 8, 0, 21;
%e 0, 0, 0, 0, 6, 0, 18, 0, 37;
%e 0, 0, 0, 1, 0, 10, 0, 37, 0, 73;
%e The triangle of lattice paths from (0,0) to (n,k) using steps (4,0), (0,4), (1,1) begins
%e 1;
%e 0, 1;
%e 0, 0, 1;
%e 0, 0, 0, 1;
%e 1, 0, 0, 0, 3;
%e 0, 2, 0, 0, 0, 7;
%e 0, 0, 3, 0, 0, 0, 13;
%e 0, 0, 0, 4, 0, 0, 0, 21;
%e 1, 0, 0, 0, 8, 0, 0, 0, 37;
%e 0, 3, 0, 0, 0, 18, 0, 0, 0, 73;
%e The diagonals of both appear to be this sequence. (End)
%p seq(add(binomial(n-3*k,k)*binomial(n-2*k,k),k=0..floor(n/3)),n=0..34); # _Zerinvary Lajos_, Apr 03 2007
%t CoefficientList[Series[1/Sqrt[(1-x)^2-4*x^4], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Jun 23 2014 *)
%o (PARI) /* as lattice paths, assuming the first comment is true */
%o /* same as in A092566 but use either of */
%o steps=[[4,0], [0,4], [1,1]];
%o steps=[[3,1], [1,3], [1,1]];
%o /* Joerg Arndt, Jul 01 2011 */
%Y Cf. A098479, A098483, A098484.
%K easy,nonn
%O 0,5
%A _Paul Barry_, Sep 10 2004