OFFSET
0,4
COMMENTS
1/sqrt((1-x)^2 - 4*r*x^3) expands to Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n-2k, k)*r^k.
LINKS
G. C. Greubel and Vincenzo Librandi, Table of n, a(n) for n = 0..1000(terms 0..200 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n-2k, k)*3^k.
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 6*(2*n-3)*a(n-3). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ 3^(n+1) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 23 2014
MATHEMATICA
CoefficientList[Series[1/Sqrt[(1-x)^2-12x^3], {x, 0, 40}], x] (* Harvey P. Dale, Jun 02 2011 *)
PROG
(PARI) Vec(1/sqrt((1-x)^2 - 12*x^3) + O(x^50)) \\ G. C. Greubel, Jan 30 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 10 2004
STATUS
approved