login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098481
Expansion of 1/sqrt((1-x)^2 - 12*x^3).
4
1, 1, 1, 7, 19, 37, 115, 361, 937, 2599, 7777, 22195, 62701, 182647, 531829, 1534903, 4461571, 13034917, 38015899, 110994193, 325011151, 952442557, 2792471239, 8198275933, 24093817531, 70852613041, 208516575043, 614145137137
OFFSET
0,4
COMMENTS
1/sqrt((1-x)^2 - 4*r*x^3) expands to Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n-2k, k)*r^k.
LINKS
G. C. Greubel and Vincenzo Librandi, Table of n, a(n) for n = 0..1000(terms 0..200 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n-2k, k)*3^k.
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 6*(2*n-3)*a(n-3). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ 3^(n+1) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 23 2014
MATHEMATICA
CoefficientList[Series[1/Sqrt[(1-x)^2-12x^3], {x, 0, 40}], x] (* Harvey P. Dale, Jun 02 2011 *)
PROG
(PARI) Vec(1/sqrt((1-x)^2 - 12*x^3) + O(x^50)) \\ G. C. Greubel, Jan 30 2017
CROSSREFS
Sequence in context: A155391 A155400 A155359 * A155334 A155422 A155370
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 10 2004
STATUS
approved