|
|
A098478
|
|
Expansion of 1/sqrt(1-2x-11x^2+12x^3).
|
|
2
|
|
|
1, 1, 7, 13, 73, 187, 895, 2737, 11923, 40333, 166753, 598111, 2404309, 8926651, 35365651, 134054005, 527360581, 2024611351, 7940840719, 30733601689, 120439122811, 468630460885, 1836912780541, 7173754477099, 28140632060899
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
1/sqrt(1-2x-(4r-1)x^2+4r^3) expands to give sum{k=0..floor(n/2), binomial(2k,k)binomial(n-k,n-2k)r^k}.
|
|
LINKS
|
|
|
FORMULA
|
a(n)=sum{k=0..floor(n/2), binomial(2k, k)binomial(n-k, n-2k)3^k}.
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) + 11*(n-1)*a(n-2) - 6*(2*n-3)*a(n-3). - Vaclav Kotesovec, Jun 23 2014
|
|
MATHEMATICA
|
CoefficientList[Series[1/Sqrt[1-2*x-11*x^2+12*x^3], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|