The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098483 Expansion of 1/sqrt((1-x)^2-8x^4). 3
 1, 1, 1, 1, 5, 13, 25, 41, 85, 205, 473, 985, 2021, 4365, 9785, 21673, 46965, 101581, 222745, 492665, 1087237, 2388749, 5251065, 11587529, 25633045, 56697933, 125345113, 277283353, 614212133, 1361824525, 3020426681, 6700678377 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS 1/sqrt((1-x)^2-4rx^4) expands to sum{k=0..floor(n/2), binomial(n-2k,k)binomial(n-3k,k)r^k} LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n)=sum{k=0..floor(n/2), binomial(n-2k, k)binomial(n-3k, k)2^k}. D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 8*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014 a(n) ~ (1+sqrt(1+8*sqrt(2)))^n / (sqrt(33+10*sqrt(2)-sqrt(265+596*sqrt(2))) * sqrt(Pi*n) * 2^(n-3/2)). - Vaclav Kotesovec, Jun 23 2014 MATHEMATICA CoefficientList[Series[1/Sqrt[(1-x)^2-8*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *) PROG (PARI) a(n) = sum(k=0, n\2, binomial(n-2*k, k)*binomial(n-3*k, k)*2^k) \\ Michel Marcus, Jul 24 2013 CROSSREFS Cf. A098480, A098482, A098484. Sequence in context: A301671 A268525 A146590 * A147205 A146875 A241233 Adjacent sequences: A098480 A098481 A098482 * A098484 A098485 A098486 KEYWORD easy,nonn AUTHOR Paul Barry, Sep 10 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 3 07:57 EST 2023. Contains 360024 sequences. (Running on oeis4.)