login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098483
Expansion of 1/sqrt((1-x)^2-8x^4).
3
1, 1, 1, 1, 5, 13, 25, 41, 85, 205, 473, 985, 2021, 4365, 9785, 21673, 46965, 101581, 222745, 492665, 1087237, 2388749, 5251065, 11587529, 25633045, 56697933, 125345113, 277283353, 614212133, 1361824525, 3020426681, 6700678377
OFFSET
0,5
COMMENTS
1/sqrt((1-x)^2-4rx^4) expands to sum{k=0..floor(n/2), binomial(n-2k,k)binomial(n-3k,k)r^k}
LINKS
FORMULA
a(n)=sum{k=0..floor(n/2), binomial(n-2k, k)binomial(n-3k, k)2^k}.
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 8*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ (1+sqrt(1+8*sqrt(2)))^n / (sqrt(33+10*sqrt(2)-sqrt(265+596*sqrt(2))) * sqrt(Pi*n) * 2^(n-3/2)). - Vaclav Kotesovec, Jun 23 2014
MATHEMATICA
CoefficientList[Series[1/Sqrt[(1-x)^2-8*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(n-2*k, k)*binomial(n-3*k, k)*2^k) \\ Michel Marcus, Jul 24 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 10 2004
STATUS
approved